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Abstract

A parameter study was conducted for a space nuclear reactor radiation shield.

The focus of this research was to explore alternatives to current radiation shield designs
to reduce the mass while maintaining the same shielding performance. MCNP4C was
used to determine the parameters necessary to build an optimum shield. A design known
as the split scatter shield offered some potential for reductions in shield mass. In theory,
less material is required for this type of shield, which uses thin shield sections to scatter
radiation away from the dose plane. The parameters for this shield design are the shield
geometry, number of shield sections, and material selection.

Split scatter shielding offers a potential for reducing the shield mass by allowing
the gamma shield material to be moved closer to the source plane. Further research needs
to be conducted on this shielding technique, however, to isolate optimum shield values.
Once these optima have been identified, a split shield can be developed and compared to
the original shield performance. Finally, an energy deposition study indicates that the
split scatter shield will absorb less energy than the unit shield, implying that there may be

less thermal stress on a scatter shield.
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PARAMETER STUDY FOR OPTIMIZING THE MASS

OF A SPACE NUCLEAR POWER SYSTEM RADIATION SHIELD

I. Introduction

Background

Nuclear power for spacecraft applications has been pursued since the earliest days
of nuclear reactor research. With a high power density and long operation times, nuclear
powered spacecraft offer significant benefits over their solar and chemically powered
counterparts. One significant concern when designing such a spacecraft is the shielding
of the spacecraft payload from the radiation that comes from the reactor. This radiation
shielding problem is further complicated when weight, volume, and mechanical
performance constraints are considered.

The traditional method for shielding unmanned space nuclear power systems
(SNPS) has been the laminated shadow shield. This shield is placed between the reactor
and the payload, creating a shadow in which the payload can hide. Early space reactors
like the SNAP-10A operated at such low powers that the shielding of gamma radiation
was unimportant [3:9]. As the reactor power increased into the kW, range, it became
necessary to layer the shields with a low Z material for neutron attenuation and a high Z
material for gamma attenuation. Various research studies have concluded that a mass
optimized shadow shield will consist of lithium hydride and tungsten layers [8:78; 9;

10:3]. Another effect of the increased power has been an increase in the thermal stresses



within the shield. This additional constraint requires that there must be a trade off
between the selection of a material based on its radiation and mechanical properties.
Several decades of research into shadow shield optimization has managed to produce a
shield that ranges from 20-30% of the total space nuclear power system mass.

Reducing the mass further will require adjustments to the free parameters that are
available to the shield designer. These parameters are the material selection, shield
geometry, reactor design, reactor and payload location, and the allowable dose limits.
The payload of interest will determine the allowable dose limits, so that parameter is
effectively fixed. The location of the payload with respect to the reactor will be limited
by the method of connecting the two systems. As the separation distance is increased, a
mass penalty is imposed for any structure that is required to connect the two systems [9].
Furthermore, there may be volumetric constraints imposed by the launch vehicle to be
considered. Although flexible tethers and free flying SNPS have been considered, these
pose difficulties of their own because of the need to always keep the reactor and payload
in the same relative position to one another for non-41tshields. The result is that the
separation distance is also effectively fixed to some optimal range, beyond which the
mass requirement of the connecting structure exceeds any savings gained by a smaller
shield. The selection of materials for SNPS systems has been narrowed down to 8
materials in this research, that meet the requirements for a compact radiation shield.
These materials are tungsten, lithium hydride, zirconium hydride, graphite, boron
carbide, beryllium, beryllium oxide, and stainless steel. The merits of these materials
will be discussed in Chapter II. The design of the reactor will have a significant impact

on how the shield is going to be designed. The reactor design will operate under its own



set of constraints, including a mass optimization. This means for the purpose of shield
design work, it is necessary to assume that the reactor is optimized and not a free
parameter. This leaves the shield geometry and material selection as the only free
parameters to work with.

One shielding design that has been examined for space nuclear power systems is
the split scatter shield [4]. This design takes a unit shield and divides it up into multiple
sections. Regions of vacuum then separate the individual sections so that radiation can
reflect off of one shield section and be scattered into space where the probability of
backscatter is almost zero. Radiation that is transmitted through the shield will be
attenuated and some will be scattered forward into space. When particles reach the next
shield section the interaction will occur again. Research conducted by Berga indicates
that a split scatter shield can be as much as 4 times as effective as a unit shield because it
relies on scattering radiation away from the target rather than attenuation by absorption
[4]. Furthermore, Berga predicted that since the absorption of radiation is reduced in the
split scatter shield, less energy would be transferred to the material [4:49-50]. This can

result in lower shield temperatures and a reduction in the shield thermal stress.

Problem Statement

The goal of this research is to investigate the potential of using a split scatter
shield for reducing the shield mass while maintaining the shielding performance of the
unit shadow shield. Shield effectiveness is determined by the ability of the shield to
match the time integrated neutron flux and gamma dose limits that are outlined in the

‘Target Term’ section of Chapter 2.



Motivation

Although SNPS’s have not yet reached their full potential, they still currently
offer the best solution to any mission that requires power in the kW, to MW, range. They
are also the best option for powering spacecraft that are going to operate beyond the
asteroid belt, where solar power becomes impractical due to spherical divergence of
radiation from the sun. Decreasing the mass of the radiation shield, while maintaining
the same level of shielding performance will increase the mass available for the payload.
Furthermore, if the thermal stresses caused by radiation absorption in the unit shield can
be reduced, then materials can be considered that may have been discounted previously in

high energy shielding problems.

Scope

This study is limited to a split scatter shield design with a total source-to-dose
plane separation distance of 5 meters. Evaluation of the radiation transport was
accomplished with a Monte Carlo technique using the computer program MCNP version
4C. This program was operated on a Sun Enterprise 450 workstation, which uses four
Ultraspark II processor operating at 400 MHz. The shield is expected to protect the
payload for 10-years of continuous operation with a reactor operating at 415 kWy,. The
Small Ex-Core Heat Pipe Thermionic Reactor (SEHPTR) provides the radiation source
for this shield design, with a 10-year neutron source term of 1.06x10* neutrons. Material
selection for this research is limited to the following 8 materials: lithium hydride,
zirconium hydride, carbon, boron carbide, beryllium, beryllium oxide, steel, and

tungsten. These materials were selected based on their well-documented and frequent



use in nuclear reactor design. The principal benchmark for shield performance is the

SEHPTR radiation shield.

General Approach

This thesis focuses on the application of a split scatter shadow shield as opposed
to the traditional unit shadow shield. Four parameters are required to parameterize a split
scatter shield and determine its functionality. These parameters are the spacing between
shield sections, the individual section thickness, the number of shield sections included,
and the placement of the material in the sections. The half cone angle, which defines the
radius of each shield section and the size of the dose plane at 5 meters is also a shield
design parameter, although it is limited by the selection of a given reactor design. Each
of these parameters must be evaluated with respect to the effect that they will have on the
performance and the mass of the shield. The perturbation of the shield design parameters
as a coupled system can then provide insight on the effectiveness of the split shield
concept. A final study will also look at the energy deposited within the split shield
sections compared to the unit shield to determine if there may be thermal loading
reduction benefits from this design.

The benchmark shield for this research is taken from the Small Ex-Core Heat Pipe
Thermionic Reactor (SEHPTR). This concept was designed by EG&G Idaho Inc, and
represents one of the most advanced thermionic reactor designs currently available. The
shield for the SEHPTR consists of a 10 cm layer of boron carbide, with 2 cm of tungsten
located inside the boron carbide 4 cm below the surface. The final layer of the shield is

22 cm of lithium hydride, which is tapered to reduce overall shield mass. An illustration



of the SEHPTR shield is shown in Figure 2. A more detailed description of the SEHPTR
is given in Chapter I, under “Description of the Small Ex-Core Heat Pipe Thermionic

Reactor (SEHPTR)”.



II: Literature Review

Extensive research has gone into the shielding of SNPS’s, which has provided
some insight into the techniques and materials that may be useful for developing the split
scatter shield. Several subjects are discussed here briefly to provide some background
on the tools used in this research, the candidate shielding materials, and previous

radiation shield designs.

Material Selection

Extensive research and experience over several decades has resulted in a list of
materials that are suitable for shielding in high radiation environments. Because there is
no single material that can effectively shield a high power SNPS, it is necessary to
combine materials in such a way that their contribution to the shield is maximized. Table
1 is a list of eight materials that were considered for a split scatter shield and their
associated physical properties. Table 2 lists the nuclear properties of the materials at
thermal energies. Each material possesses certain characteristics that make it suitable for
use in a SNPS shield, which must be balanced with certain disadvantages. The remainder
of this section discusses the major advantages and disadvantages of the eight materials

that are considered for an optimal split scatter shield.



Table 1.

Physical Properties of Candidate Shield Materials [6;7]

Material Density Atomic Weight Melting Point [K]
[g/cm3] [g/mol]

LiH 0.775 7.948 959

Z1H5 0 wi o 5.40 92.228 900 (Dissociates)
Be 1.85 9.103 1560
BeO 3.025 25.02 2843

Graphite 1.70 12.011 3600 (Sublimates)
B,C 2.51 55.251 2450
Steel 7.86 55.847 1536
\\ 19.30 183.85 3410

Table 2. Nuclear Properties of Candidate Materials (2200 m/s) [6;7]

Material Na Oabsorption A [em]y, Ofscatter Ascatter

[atoms/cm’| [b] [b] [em],
LiH 5.87E22 71.33 0.24 394 0.43
Z1H5 0wt % 3.53E22 0.84 34,13 84 0.34
Be 1.22E23 10 0.82 7.0 1.17
BeO 7.28E22 10 1.37 6.8 2.02
Graphite 8.52E22 3.95 2.97 5.09 2.31
B4C 2.74E22 3838 0.01 14.25 2.57
Steel 8.48E22 2.53 4.66 11 1.07
Wa 6.32E22 19.2 0.82 5 3.16

(a) Nuclear properties are Maxwellian averaged cross sections (1 MeV)
(b) Mean free path of neutron in material

Lithium hydride (LiH) has long been selected as the best choice for neutron
shielding of a SNPS [3:24-30]. The low atomic number of both lithium and hydrogen
allows neutrons to be moderated to thermal energies with the minimal number of
collisions, where neutron absorption can occur more frequently. Lithium hydride has the
lowest density of all of the materials considered, making it the best choice for a mass
optimized shield. The primary disadvantage of LiH is that it must be maintained at
operating temperatures between 600 and 680 K [3:24-27]. Below 600 K radiolytically
induced hydrogen dissociation will cause the volume of the shield to increase as LiH
bonds are broken and individual atoms of Li and molecules of H, are created [3:27]. This

increase in volume increases the stresses throughout the shield and leads to cracking.



Additionally an oxygen impurity in the LiH forms lithium hydroxide (LiOH). At
temperatures above 680 K, the LiH and LiOH undergo the following reaction:
LiH + LiOH - Li,O+H, 3)

This reaction combined with shield punctures by meteorites can lead to hydrogen
out gassing, reducing shield performance [10:9]. Maintaining LiH within this
temperature range can be difficult since it also has a poor coefficient of thermal
conductivity. These thermal constraints dictate where LiH can acceptably be placed in
the shield.

Zirconium hydride (ZrH,) combines the low atomic weight of hydrogen with the
moderate atomic weight of zirconium to make a very effective neutron and moderately
effective gamma shield. Furthermore, ZrH, does not have the same thermal difficulties
that LiH does and is much more stable at higher temperatures [7:326]. The disadvantage
to ZrH, is that there is no commercial source of the material, which constrains the amount
of material and the methods by which it can be processed [7:328].

Beryllium (Be) is a lightweight element that is especially effective as a neutron
moderator and reflector because of its low atomic number. Beryllium also has a
relatively high melting point and maintains its strength at high temperatures [7:276].
Beryllium can have a variety of reactions with both incident neutrons and gamma rays,
which can produce additional particles. For incident neutron energies above 1 MeV,
beryllium can undergo the reaction *Be(n,2n)*Be with a cross-section of 0.5 barns.
Incident gamma rays with energies greater than 1.66 MeV can also produce photo-
neutrons in beryllium [7:276]. Finally, beryllium produces high-energy secondary

gamma rays when it captures neutrons. Approximately 50 gamma rays are produced with



energies ranging from 3-5 MeV and 75 gamma rays with energies from 5-7 MeV for
every 100 neutrons that are captured [7:277]. Since the absorption and (n,2n) cross
sections are relatively low, the biggest issue when designing shields with beryllium is the
production of photo neutrons [7:281]. The material must be placed in a location where
either the number of incident photons above 1.66 MeV is negligible, or there is additional
shielding beyond the beryllium capable of stopping these secondary neutrons.

Beryllium oxide (BeO, beryllia) has almost the same nuclear properties as
beryllium metal, but is a better selection for high temperature shielding applications
because of the increased melting point and decreased coefficient of linear thermal
expansion [7:278]. The same nuclear considerations must be given to beryllia as
beryllium metal when using it in a radiation shield.

Graphite is another excellent material for neutron moderation and reflection, and
is only slightly less effective than beryllium. The benefit of graphite, is that it does not
undergo any low energy photo-neutron or (n,2n) reactions that increase the neutron
population. Since it also has a very high sublimation temperature, it can be placed almost
anywhere within the shield and still work effectively. Neutron capture by graphite
produces a gamma ray with an average energy of 4.5 MeV [7:283]. The primary
disadvantage to using graphite is that its many of its physical properties can change by as
much as 2 to 3 times under neutron irradiation [7:282]. The operating temperature of the
graphite may help to alleviate some of these problems, since annealing of radiation

defects occurs with increasing temperatures [7:282].
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Boron carbide (B4C) is a material that takes advantage of carbon to moderate
neutrons down to thermal energies, where boron-10 can capture them with its high
absorption cross section of 3838 barns [7:337]. The reaction of the B is given as:

B+ n— |Li+,He 4)

This reaction also produces a 0.48 MeV gamma ray and 2.31 MeV of kinetic
energy [7:337]. B4C is a good choice as an engineering material because of its high
melting point and decent thermal conductivity when properly prepared [7:338]. The
disadvantage of using B4C is that radiation damage occurs to the material as the boron is
burned up in capture reactions. Studies have indicated that at about 10% boron burn-up,
some helium release, material cracking, and spalling will occur. After 15% burn-up a
swelling of 1% has been observed. Finally, between 16-25% burn-up B4C becomes
granulated [7:339].

Stainless steel makes a very effective gamma ray shield and has the advantage of
possessing good structural properties. Because steel is one of the most commonly used
engineering materials, its properties are well known and it is easy to fabricate into any
shape. Although steel is effective at slowing neutrons down to thermal energies, it is a
source of high-energy gamma rays from neutron capture at resonance energies and
inelastic scatter reactions. Over 25 percent of the neutrons captured in steel will result in
gamma rays with energies greater than 5 MeV [5:86]. The placement of steel within a
shield must therefore be balanced between the ability of the steel to attenuate gamma rays
and the production of high-energy gamma rays by neutron capture.

Tungsten makes an excellent gamma shield because of its high density and atomic

weight. This material has also long been selected for use in space shielding applications

11



because it requires the least amount of space for very efficient gamma shielding. Like
steel, tungsten also produces high-energy gamma rays from neutron capture at resonance
energies and inelastic scattering. For tungsten however, only 6 percent of the neutrons
captured result in gamma rays with energies greater than 5 MeV [5:86]. Additionally, the
highest energy gamma ray from neutron capture in tungsten is 7.42 MeV while in steel it
is 10.16 MeV [5:86].

The production of high-energy gamma rays can be problematic, because it leads
to the production of additional gamma rays at lower energies. As the gamma ray energy
increases (greater than pair production threshold of 1.02 MeV) so will the probability of
pair production reactions. As these high-energy gamma rays are absorbed by pair
production an electron and positron will be created each with energy of 0.51 MeV. The
electron will then scatter until it is captured, while the positron will annihilate with
another electron producing a new gamma ray with energy 1.02 MeV. As the electron and
positron travel through the material they will slow down releasing gamma rays in the
form of Bremsstrahlung, which will then be Compton scattered or captured by
photoelectric absorption. Therefore, although high-energy gamma will be readily
absorbed, they can lead to an increase in the number of gamma rays that exist in the
region where Compton scattering dominates. It is desirable therefore to have fewer

neutron capture reactions that result in high-energy gamma rays.

Description of the Small Ex-Core Heat Pipe Thermionic Reactor (SEHPTR)

The Small Ex-Core Heat Pipe Thermionic Reactor (SEHPTR) was selected as the

source term for this study [8]. This SNPS concept was presented in October 1991 by

12



EG&G Idaho, Inc. A summary of the primary performance parameters for this reactor is

listed in Table 3.
Table 3. Key Design Parameters of SEHPTR][8:12]

Reactor Parameter Value
Net Electrical Power [kW.] 40
Thermal Power [kWy,] 415
System Efficiency [%] 10
Core Length [cm] 50
Core Outer Radius [cm] 20
Core Inner Radius [cm] 10
BeO Reflector [cm] 10
Be Reflector Thickness [cm] 7
Heat Pipe Thickness [cm] 2.8
Reactor Subsystem Length [cm] 70

The SEHPTR design was selected for this study because it represents one of the
most advanced space reactor systems currently available. The high system efficiency and
small core design make it a more desirable option for future missions in space. The
SEHPTR is also an attractive system, because of the low mass of the reactor system. The
background information on this reactor was very complete making it easier to represent
and evaluate in MCNP4C. Figure 1 shows a cross sectional view of the SEHPTR design.
The reactor is a hollow cylinder with an inner radius of 10 cm and an outer radius of 20
cm. A control rod path is located at the center of this cylinder and is designed to
accommodate a B4C control rod. Beryllium reflectors at the top and bottom of the core
are provided to reflect the axial flux back toward the reactor. Reactivity is controlled by
moving beryllium reflectors located on the outside of the core. The reflectors are motor
driven and can be rotated to provide the reactor core with an unobstructed window to
open space. When the reflectors are in the open position, neutrons are allowed to stream

from the reactor into space, and the reactor becomes sub-critical. The reflectors can
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likewise be placed in closed or half closed positions to achieve a critical state. The
thermionic heat pipe modules are located on both the inside and outside of the core and
run the entire length of the reactor. These modules convert the heat from the nuclear
reactor into electricity by effectively boiling electrons off of a hot emitter surface (~1800
K) across an inter-electrode gap (< 0.5 mm) to a cooler collecting surface (~1000 K)
[1:93]. The heat pipes then run out from the reactor and down the outside of the radiation

shield to form graphite covered radiating surfaces.

Core Region
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Figure 1. Cross Sectional View of a SEHPTR [8:10]

Target Term

The total neutron flux and gamma dose at the target is a function of several

variables, some of which are not directly related to the design of the shield. The
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separation between the back of the shield and the payload, as well as the size of the
payload will in part determine how much radiation is incident upon the module.
Furthermore, reactor support structures such as the heat rejection radiators and
connecting boom may scatter radiation back towards the payload module. Parameter
studies have been performed on the separation distance versus boom mass as well as
contributions to the target from scattering off of the radiators [9]. Because the focus of
this study is on the effectiveness of a split scatter shadow shield, only the additional
scattering back to the dose plane caused by the radiators was considered.

This study assumes an unmanned spacecraft, so the target of concern is the silicon
in the spacecraft’s computer systems. Several different shield designs have concluded
that for an operational reactor lifetime of 10 years, the tolerable neutron fluence is 10"

nvt (1 MeV equivalent) and the tolerable gamma dose is 10’ Rad (Si) [8:6:9].

Comparison of Radiation Shield Designs

All radiation shields, regardless of whether they are unit or split, must be capable
of meeting certain requirements before they can be considered to effectively shield a
SNPS. The primary function is to reduce the reactor-to-payload neutron fluence and
gamma dose to acceptable levels. The definition of acceptable limits is determined by
the composition and geometry of the payload.

The quality of the neutron and gamma flux must also be considered. Reducing
the number of neutrons and gamma rays leaving the back face of the shield is not
sufficient. The energy spectrum of the neutron fluence must be softened so that the

majority of neutrons leaving the shield are of low energies. Likewise, the energy
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spectrum of the gamma flux should be softened so that high-energy pair production and
scattering reactions are less likely to occur in the target. The payload must be sufficiently
shielded against cosmic radiation, so particles with lower energies that make it through
the reactor radiation shield would have a higher probability of being stopped in the
payload shield. A brief comparison of the SP-100, STAR-C, and SEHPTR radiation
shields is now provided to give some benchmarks to match against the new split scatter

shield design.

SP-100 Shield Optimization.

Several SNPS studies have focused on designing an optimal radiation shield
based on mass, volume, and performance. Lee conducted a shield optimization study for
the SP-100, which has an operating power of 2 MWy, with a 7-year life expectancy
[10:20]. Lee’s recommendations for a mass and volume optimized shield are listed in
Table 4.

Table 4. Optimized Shield Parameters for the SP-100 [10:106]
Materials Mass [kg] Volume [cm3]

LiH/W 528.39 437402
B4C/W 655.35 211176

Lee concluded that the slightly more massive B4C/W shield might be the more
acceptable shield for higher power reactors, since B4C doesn’t have the thermal
constraints that LiH does, and because it requires about half the volume of the LiH/W
shield [10:106]. Lee also concluded that the optimal placement of tungsten within the
shield is 40 cm from the core for a LiH shield and 10 cm from the core for a B4C shield

[10:105].
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STAR-C Shield Design.

The STAR-C is another advanced SNPS design that was designed primarily by
General Atomics, and presented on April 9, 1991 at Phillips Laboratory, Kirtland Air
Force Base, New Mexico. This reactor was designed to operate at 340 kWy, with an
efficiency of about 12% to provide 40 kW, of power. The baseline STAR-C shield
consists of 21.0 cm of lithium hydride, followed by 0.635 cm of borated stainless steel,
and completed with 2.5 cm of tungsten. The mass for the STAR-C shield is 1320 kg.
The design requires a 5-meter separation distance from the back of the shield to the
payload [9:121]. An additional parameter study concluded that the optimal separation
distance between the shield and payload is between 9 and 10 meters. At this distance, the
mass of the shield is reduced to 431 kg, with a connecting boom mass of about 250 kg

[9:143].

SEHPTR Shield Design.

As mentioned previously, the SEHPTR design operates at 415 kWy, with an
efficiency of about 10% to produce 40 kW, of power. The SEHPTR shield consists of 10
cm of B4C, 2 cm of tungsten, and 22 cm of LiH. A cross-sectional view of the SEHPTR
baseline shield, reprinted from the original text, is illustrated in Figure 2 [8:78]. The B4C
is placed closest to the reactor, where shield temperatures will approach 1000 K. The
tungsten layer is placed approximately 2.5 cm inside of the B4C and is tapered towards
the edges where the photon flux decreases. The LiH is placed below the B4C, where the
temperature never exceeds 670 K [8:107]. This placement of the LiH also allows for a

large radiative surface area for the material to reject heat to space. With this design, the
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SEHTPR radiation shield is 800 kg with a shield to payload separation distance of 5

meters [8:6,13].

7\ I 102.0 cm
| 22.0cm B

\%25,50.:11 _»{ f-

Figure 2. Baseline Shield Design for SEHPTR [8:78]

Summary of Previous Shield Designs

Previous shield designs indicate that lithium hydride is the material of choice for
neutron shielding, while tungsten is used for gamma shielding. Because the split scatter
shield will optimize shield performance through radiation scattering, it is important to
evaluate additional materials to make sure that there are not better alternatives. In an
initial review, it also appears that the split scatter concept will be more effective for
neutrons rather than gamma rays. Because the mass of the split shield will increase as it
is pushed back, the gamma shield material needs to be as close to the source plane as
possible. Additionally, there is a direct relationship between the mass of a material and
the gamma ray cross section, which tends to increase the overall cross section for more
massive materials. The gamma cross section for most materials has photoelectric effect
dominating at low energies, Compton scattering for intermediate energies, and pair
production at high energies. It is extremely difficult to control the energies at which

gamma rays will interact in the shield, making preferential scattering interactions difficult
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to predict and control. Because of these reasons, it is better to keep the gamma shielding
material together and use it to attenuate gamma radiation through absorption. Some of
the key elements to developing a successful split scatter shield are reducing the overall
mass required for the gamma shield by moving it closer to the source plane and

enhancing neutron scatter by splitting the neutron shielding material.
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III: Method of Analysis

Two methods were considered for the evaluation of the split scatter shield. The
first method uses the Monte Carlo code MCNP4C directly, with optimized importance
functions and locations of particle splits to decrease the computer evaluation time. The
second technique is the matrix method, which is similar to the method of successive
scatters to calculate the effectiveness of the split scatter shield. This technique was
applied in an effort to speed up the split shield experiments, and used material shielding
information taken from MCNP4C runs.

Seven experiments were conducted for the split scatter shield to study key
parameters such as material selection, shield spacing, material thickness, and shield
geometry. The first two experiments used a similar technique to study the parameters for
material thickness for attenuation and material thickness for scattering. The third
experiment uses a simple Monte Carlo technique to look at the relationship between
shield spacing and the half cone angle to study the loss of particles as they stream through
vacuum between shield sections. The fourth and fifth experiments were designed to
explore the effect of the number of shield sections and the geometry on shield
performance. The final two experiments were designed to test the entire scatter shield
when assembled. These experiments included studies on the proper positioning of the

gamma shield to minimize (n,y) reactions and energy deposition in the shields.

MCNP4C

The primary analytical tool used to perform the shielding analysis was the Monte

Carlo N-Particle transport code, version 4C (MCNP4C). This code, obtained from the
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RSICC computer code collection, uses a Monte Carlo technique to provide an estimate of
the neutron and photon transport through a given selection of materials and geometries.
An explanation of the Monte Carlo technique can be found in a variety of radiation
transport texts, including the text by Lewis and Miller [11] or in the reference
documentation that comes with MCNP4C [17]. A tutorial included in Appendix A
describes the features of MCNP4C that were used in this research.

A sample input deck has been included in Appendix B of this report to
demonstrate how the problems are set up for the code. This input deck models the Small
Ex-Core Heat Pipe Thermionic Reactor (SEHPTR) and a short explanation is given after
each section to describe how to set up a model in MCNP4C. Chapters four and five of
the MCNP4C documentation provides further examples of MCNP4C input and output
and can be referenced for additional help in understanding the code [17:4 1,5 1].

MCNP4C was selected for this thesis because it offers a lot of flexibility in shield
design. Complex geometries can be created in three dimensions and then visually plotted
using the MCNP4C plot routine [17:B_1]. This feature allows the user to detect any
flaws in the geometry of the problem and correct them before spending time running a
problem that is not properly defined. MCNP4C is capable of running neutron, photon,
electron, neutron-photon, and neutron-photon-electron transport problems. The last two
types of problems account for interactions such as photo-neutron production,
Bremsstrahlung, and photons created from neutron capture to name a few. The variety of
tallies that MCNP4C can provide is another feature that makes this program robust.
Particle distributions can be reported in a variety of ways, to include the current, partial

current, flux, flux at a point detector, or energy deposition in a material.
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The primary disadvantage to using a Monte Carlo technique is that it is
computationally expensive and contains inherent stochastic error [13]. Monte Carlo
techniques are computationally expensive because the precision of the result is directly

related to the number of particles that are sampled. It can be shown that the precision of

a tally changes as 1/ Jn , where n is the number of particles that are contributing to a tally
[13]. The use of appropriate variance reduction techniques will help to increase the
precision while reducing the variance for smaller particle sampling batches. The
stochastic error can be quantified through the application of batch sampling. This
technique involves running the same experiment multiple times but with a different set of
random numbers. When the results are compared against one another, the designer can

determine how much of the error is associated with statistical noise in the problem [13].

Matrix Methods [2:152-153]

Since the calculations for MCNP4C are computationally expensive, the matrix
methods approach was considered to perform cheap calculations on the split scatter shield
[13]. This method is similar to the method of successive scatters, by using an attenuation
estimator to calculate the bulk transport of radiation through the shield. The distribution
of particles can then be determined at user-defined interfaces. For this technique, the
shield is broken into a set of regions that characterize different materials. Particles are
started at the source plane and travel through the first material region. Upon reaching the
next material, some of the particles are transmitted forward, while some are reflected

back toward the source. These reflected particles are then transported back to the source,
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reflected, and again transported back across material 1 to contribute to the total particle

distribution at the material interface. Figure 3 illustrates this process for two materials.

Matenial 1 Matenal 2
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Figure 3. Description of Scattering Used in Matrix Methods
Only twice reflected particles are considered for split scatter shield applications, because
only initial and twice scattered contributions to the particle distribution are significant in
the results.
The matrix methods technique is applied by solving a set of equations that each
describes an individual piece of the split scatter shield. Equations 5 and 6 describe the
particle distribution at the right edge of a material region, while Equation 7 describes the

source term for the split shield problem.

T =L I

n+l n+l

R, (5)

where

J.F =# of particles traveling forward at the right side of region n
Joa" =# of particles traveling forward from the right side of region (n-1)
Jos1® =# of particles traveling backward from right side of region (n+1)
T." = Forward transmission attenuation coefficient of region n
Ta+1> = Backward transmission attenuation coefficient of region (n+1)
R, = Reflection coefficient off of right face of region n
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Jn - Jn+1 Unﬂ + Jn—l |:T'n mnﬂ (6)
where
J.2 =# of particles traveling backward at right side of region n
Jar1” =# of particles traveling backward from the right side of region (n+1)

Joi' =# of particles traveling forward from the right side of region (n-1)
Tas® = Backward transmission attenuation coefficient of region (n+1)
T,f = Forward transmission attenuation coefficient of region n
Ru+1” = Reflection coefficient off of left face of region (n+1)

F _ B B F
Jo =J e T, I, Ry (7
where
JoF =# of particles traveling forward from the source
Jsrc = # of source particles

J.® =# of particles traveling backward from the right side of region n
T2 = Backward transmission attenuation coefficient of region n
Ro" = Reflection coefficient off of the source plane

Equations 5 through 7 can be combined for a set number of regions to create a system of
equations that describes the distribution of particles at each of the region interfaces.
Equations 8 through 11 are used to solve the forward distribution of particles at the
region interfaces and are based on the distribution of particles going backward at the

region interfaces and from the source.

J(f = JSRC +JIB I:T;B De(f (8)
JI =g I+ 7 Ry T+ ) (RS ©)
Jy =g IO +JP P IR O 0+ O [RY (10)

U= Ty QNI +90 0P R (177 +
i=1 i=l1 (11)
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These equations can be solved simultaneously with a linear algebra equation of the form

shown in equation 12.

—_—

Jr=A, Ws+Tr Uy, (12)

where

Jr = Vector of particle distributions in the forward direction

Jg = Vector of particle distributions in the backward direction
Jsrc = Source term (Scalar)

Ar = Matrix of transmission and reflection coefficients

Tk = Vector of transmission coefficients

Equation 12 can be solved, if the backward particle distribution is known as well as the
transmission and reflection coefficients for all of the regions. The backward particle
distribution can be determined by rearranging equations 5 though 7 to create equations 13

thorough 16.

I = T RS 4 T RS O T+

~--+JF D—vF mB i TB (13)

n+l n+2 i
=1

JP=Jg IRy +J) I O IR +

i (14)
"'+JnF Unlil D2;,5;2 El_l TiB
i=2

Jy =J0 R +J) 7 IR +

n 15
et J: |:Tvnil miz I:I_jl T;'B ( )

Jf = JrIt:—l [7sz mfﬂ +J: |:7:'1‘[-:-1 |:’I—vnlj-l Ije)f;+2 (16)

These equations can also be solved simultaneously with a linear algebra equation of the

form shown in equation 17.
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Js = A, U - (17)
Now there are solutions for the forward and backward particle distributions at the region
interfaces. The FORTRAN-90 program “Split Shield” was developed to create the
operator matrices and then used to solve for the particle distributions at the interfaces

using an iterative technique.

“Split_Shield” Code.

A copy of the “Split_Shield” source code is located in Appendix B. The first step
of “Split_Shield” is building the attenuation operator matrices for both the forward and
backward transmission of particles. The values for the forward and backward
transmission and reflection coefficients are determined by running MCNP4C for the eight
different materials. For each material (including vacuum), a series of input decks was
created to demonstrate how the particle distribution changes with an increase in material
thickness. This is the same procedure that is discussed later in this report to perform the
analysis for the optimum material thickness for an attenuator. The particle distribution
data from the MCNP4C runs are placed into data files for each material, which are then
used to create the Ar and Ag matrices based on equations 8 through 11 for the forward
matrix and 13 through 16 for the backward matrix.

The program first reads the shield parameters from an input file. The input shield
parameters include the shield name, the number of shield sections, and the thickness of
material in each region. For each region, the program opens the specified material data
file and an interpolation routine is performed on the data to determine the transmission

and reflection coefficients for a specified material thickness. Next the program starts
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filling individual arrays with the forward and backward values of the transmission and
reflection coefficients. This results in four arrays that are the same size as the number of
regions in the problem plus 1. These arrays are the forward transmission array, the
backward transmission array, the forward reflection array, and the backward reflection
array. The next routine takes these arrays and combines different elements of them to
create a matrix with values that represent the coefficients in equations 8 through 11
(forward coefficient matrix) and 13 through 16 (backward coefficient matrix).
Multiplying the source term by the appropriate values from the forward transmission
array creates the source vector. Finally, the program calculates the forward and reverse
particle distribution vectors using an iterative process. This calculates the relative error
between the particle distribution for the current and previous iteration and outputs results
when the difference in distributions meets a convergence criterion. The last portion of
the program calculates the mass and volume of the shield and then prints the entire set of

shield results to an output file.

Shield Analysis Techniques

For the initial split scatter shield study, the geometry for all shields was limited to
a frustum (truncated cone) that has the same dimensions as the cone used to bound the
SEHPTR design (vertex at 137 cm, half cone angle of 21 degrees). The top of this
frustum coincides with the bottom of the SEHPTR at 0 cm. At this location, the radius of
the frustum is 52.7 cm. Several experiments were designed to determine the four

parameters needed to characterize a mass optimized split scatter shield.
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The SEHPTR Source Term.

The distribution of neutrons and photons that cross from the reactor into the
radiation shield was determined by running MCNP4C with a k-eigenvalue calculation
and utilizing a series of ring detectors on the bottom plane of the reactor. Each detector
tally was split into 15 energy groups for neutrons and 9 energy groups for photons. The
energy dependent neutron and photon flux profiles leaving the bottom of the reactor into
the shield are shown in Figures 4 and 5 respectively. These Figures indicate that around
20 cm, there is a drop in both the photon and neutron flux, which coincides with the outer
edge of the reactor core.

The source term is represented in shielding problems without the presence of the
reactor by using the MCNP4C Surface Source Write card [17:3 65-66]. The SSW card
allows the user to specify a plane at which the particle distribution is required. MCNP4C
will then track every particle crossing this plane and record the particle direction and
energy in an output file. A Surface Source Read card can then be used for all subsequent
shielding problems to source these stored particles into the problem [17:3 66-69]. This
allows the user to run multiple shield designs using SEHPTR data, without having to run
the k-eigenvalue problem repeatedly. Care must be taken when using these features to
include any materials that might reflect particles back to the reactor and affect the
reactivity. Since the original SEHPTR design placed the radiation shield 20 cm below
the bottom of the reactor, it is not necessary to include the shield in the k-eigenvalue

calculations [8:10].
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Plot of Neutron Flux Leaving a SEHPTR Into the Radiation Shield Region
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Figure 4. Illustration of the Source Neutron Flux Profile
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Figure S. Illustration of the Source Photon Flux Profile
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All MCNPA4C tallies are reported “per source particle”, because the distribution
estimates consist of fractions of particles that contribute to the tally. It is necessary
therefore, to determine the total number of source neutrons in the SEHPTR for a 10-year
system lifetime. The total number of source neutrons was estimated by dividing the
thermal power of the reactor (410 kW) by the average energy released per fission (193.7
MeV/fission). This number was then multiplied by the average number of neutrons
released per fast fission in U-235 (~2.5 n/fission), to provide the total number of neutrons
that are produced in the reactor per second. The total number of neutrons that are then

produced given a 10-year operating cycle is 1.06x10* neutrons.

Shield Spacing and Half Cone Angle Parameters.

The shield spacing and half cone angle parameters are extremely important to the
success of a split scatter shield. The proper spacing of the shields and the angle of the
shield shadow will influence how many particles can leak from the system before
reaching the next shield section. These parameters were explored using a simple Monte
Carlo code developed by Mathews that calculates the probability of particles missing the
target shield in a two section split shield design [14]. This code can be found in
Appendix D. The program allows the user to input the half cone angle of the system, the
location of the first and second shield sections, the number of particles to sample, and the
number of batches to run.

The program functions by drawing three random numbers that determines the
radial and angular position of the particle on a source disk, and the cosine of the angle at

which the particle is leaving the disk. This information will show where the particle
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starts on the source disk, and the direction it is heading will indicate where the particle is
located when it has reached the target disk. If the location of the particle lies outside the
space of the target disk after following the set trajectory, then it will have missed and a
tally is accumulated. Figure 6 illustrates how this problem is set up and the variables that
define particle location and direction. R; and R, are the radii of each of the respective
disks. The stating radius of the particles is determined by multiplying the radius of the
source disk by a random number from 0 to 1. Next the angular location of the particle on
the source disk is calculated by multiplying 21t with a random number from 0 to 1. This
provides the value for omega. Finally, the direction the particle travels is determined by

selecting a random number between 0 and 1, which is the cosine of theta.

F-Axis

Figure 6. Illustration of Shield Configuration for ‘MissDiskProbability’ Code
This program makes it possible to study the effects that the shield spacing and

half cone angle (0one) have on the leakage of particles from the system. For

31




simplification isotropic scattering was assumed for particles leaving the source disk. A
final note is that the code allows either disk 1 or disk 2 to be the source disk. This allows
the user to study particles that stream forward from the first disk, as well as the particles

that are back scattered after hitting the second disk.

Material Thickness For Attenuation Parameter.

The technique for determining the material attenuation thickness parameter relies
on MCNPA4C to estimate the particle flux and current after passing through a given
thickness of material. Particles are tracked through a material of increasing thickness and
tallies are taken to determine how many particles travel through and are backscattered by
the slab. The transmission and backscatter parameters for a given material are then
illustrated by plotting the tallies versus material thickness. Figure 7 illustrates this
process using LiH as the shield material. Using this plot allows the designer to select a
material and thickness to meet a shield dose limit requirement. For split scatter shield
applications, the backscatter parameter is more important since primary particle loss is by
scatter away from the system. Particles that are scattered from the front face of a shield
will be directed back toward a shield with a smaller radius. The result is that there is a
better chance for the particles to escape from the system. Based on Figure 7, split shields
using lithium hydride should focus on selecting a thickness that is less than about 7 cm.
Beyond 7 cm, there is no significant increase in backscatter performance with an increase
in shield mass. This technique was applied to the eight candidate materials listed in
Chapter I1, to allow for comparison between them regarding their radiation attenuation

performance versus mass. Because backscatter is the primary parameter in attenuation
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performance for split shields, the material comparison will be based on the thickness at
which 85% of the total material backscatter is achieved. The 85% reduction thickness is
used because of the diminishing returns from reflection that are seen as the thickness
increases. It also provides a standard set point from which to evaluate the performance of

the individual materials in an unbiased manner.

Change in Neutron Flux vs. Shield Thickness in Lithium Hydride
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Figure 7. Material Thickness Parameter for Attenuation and Backscatter

Material Thickness for Energy Spectrum Softening Parameter.

The change in the total flux or current is not the only condition that must be
satisfied when determining the effectiveness of a shielding material. The ability of the
material to soften (reduce the average energy) the energy spectrum of the particle
distribution must also be taken into account. For this shielding application, a material

cannot be considered effective if it is transparent to high-energy particles. MCNP4C
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allows the user to break any tally into a number of energy bins. The tallies used in
determining the material thickness all included energy binning into three coarse energy
groups for both neutrons and photons. The energy groups for neutrons are set up to track
particles that are in the fast (1.0 to 10.0 MeV), resonance (0.01 to 1.0 MeV), and sub-
resonance (0 to 0.01 MeV) ranges. Photon energy groups were set up to track photons
with energies in the pair production, Compton scattering, and photoelectric effect ranges.
The energy groups are designed to be fairly coarse to allow for an easy comparison
between different materials. Once the energy dependence is determined for each
material, it is plotted to demonstrate which materials are most effective at softening the
particle flux. Figure 8 uses LiH to demonstrate how the energy dependence of the flux
changes with increasing thickness.

From this plot, it is seen that the higher energy neutrons are quickly attenuated,
and scattered into the lowest energy group. This is why the curve for the thermal
neutrons initially grows, before decaying away at around 10 cm. Although there is a net
increase in the low energy group neutron flux by about an order of magnitude at 5 cm,
there is also a corresponding drop by a half order of magnitude in the higher energy
group fluxes. This same procedure was used to generate neutron and photon flux energy

softening plots for all materials in this study.
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Energy Dependent Neutron Flux Distribution in LiH
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Figure 8. Effect of Material Thickness on the Energy Dependent Neutron Flux

Material Thickness For Scattering Parameter.

The optimal material thickness for radiation scattering is not necessarily equal to
the optimal material thickness for radiation absorption. For this experiment a MCNP4C
current tally is used with the cosine tally modifier to determine how the thickness of a
material affects the direction that particles will scatter. The reference vector for this tally
is the axis that runs through the length of the shield and points in the direction of the
particle flow (z-vector). Figure 9 illustrates the reference vector and the location of the

different direction cosine bins.
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Figure 9. Depiction of MCNP4C Current Cosine Tally Locations
Four equally spaced cosine bins were created each with an angle of 22.5 degrees. The
optimum scattering thickness is illustrated by plotting the current tallies along with the
mass of the shield section. LiH is again used in Figure 10 to illustrate how increasing the
material thickness influences the direction that particles will be scattered. A word of
caution is required, because selecting equally spaced angular bins will produce unequally
spaced cos(0) values, which in turn means that the solid angle bins will be unequally
spaced. Because of this feature, Figure 10 can be somewhat misleading. The outer two
angle bins will actually have smaller solid angles while the middle bins are
approximately twice as large as the outer bins. Therefore, the actual angular current
distribution should be fairly flat across each shield sections. This does not change the

fact that the materials are still ineffective at changing the direction that particles scatter.
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Angular Dependence of Current Through LiH
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Figure 10. Effect of Material Thickness on Scattering Direction
Increasing the LiH thickness reduces the scattering into the central angles and
increases scattering toward the centerline and outer edges. Therefore, it is not

advantageous from a scattering perspective to increase the thickness of the LiH further.

Number of Shield Sections Parameter.

For this experiment, the unit shield was split into a two-section, three-section, and
four-section shield respectively, with each section of equal thickness. The total length of
the shield is fixed at 500 cm, which accounts for the shield thickness and 233.5 cm of
vacuum on each side. Each time the shield is split, the vacuum and shield sections are
expanded evenly between the source and dose planes. A flux tally is then placed on the
dose plane so that the particle distribution from different shield configurations can be

plotted and the effect of shield splitting evaluated. A coarse energy spectrum of the
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neutron flux is also tallied to determine whether certain energy particles are scattered

from the shield sections more effectively.

Shield Geometry Parameter.

Because the purpose of the split scatter shield is to scatter radiation out of the
shielded solid angle, it might not be necessary to always cover the entire shield shadow.
Consider a particle that has been scattered off of a shield section and is heading in a
direction that will remove it from the shielded solid angle. If a material is placed in the
path of this particle before it reaches escape, then there is a probability that the particle
might be scattered back toward the dose plane [13]. Figure 11 provides an illustration of
this scattering process.

The geometry parameter focuses on the proper tapering and sizing of the shield
sections to allow particles to escape that have a high escape probability. This analysis
was strongly influenced by the results obtained in the material scattering study. One way
to illustrate the amount of particles that will leak is to go to the edge of the source plane
and map out the space that is covered by particles traveling between 22.5 and 67.5
degrees. This technique is illustrated in Figure 12, which shows a region some distance

past the source plane, where the total flux should be reduced.
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Figure 11. Effect of Shield Tapering on Particle Scattering

Source Plane Region of Lower Incident Flux

Figure 12. Angular Distribution of Neutron Flux Between 22.5 and 67.5 Degrees

Positioning of the Gamma Shield.

One issue for gamma shielding that was mentioned in the materials section of the
literature review, is the capture of neutrons by the gamma shield material [6]. These

captures, along with inelastic neutron scattering off materials like steel or tungsten will
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result in an increase in the gamma ray distribution in the shield. Therefore, the placement
of the gamma shielding material within the shield is important for optimizing
performance as well as for mass considerations [10]. The shield cannot be placed
directly adjacent to the reactor, because the resultant gamma ray hardening will require
additional shielding at another point in the shield. As the gamma ray shielding material is
moved further from the reactor, the mass will increase because the divergence of the flux
will require a larger shielded area. Analyzing several configurations of the unit shield
and measuring the gamma ray dose at the dose plane determined the optimal placement
of the gamma shielding material. The type of shield analyzed should not adversely affect
the results of this test, because the key factor for gamma shield flux hardening is the
energy of the neutrons. The neutron flux energy spectrum will need to be softened by a
certain amount of material regardless of the shield that is used. Therefore, the results

from this test can be taken from the unit shield and applied to the split scatter shield.

Energy Deposition in the Shield.

Berga predicted in his thesis, that the amount of energy deposited in a split scatter
shield would be reduced, because the shield relies on scattering radiation rather than
absorbing it [4:49-50]. The total energy deposited within any shield is a combination of
many sources. Among these are gamma heating, neutron capture, neutron scattering, heat
transferred from the radiators, and heat transferred from the reactor. Although some of
these processes are beyond the scope of this research, an estimate of the energy deposited
in the shield by scattering, gamma heating, and neutron capture can be determined by

using an energy deposition tally in MCNP4C [16:3 _74]. This tally will report the
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average energy deposited in a given cell in units of MeV per gram. To determine
whether the split scatter shield is advantageous from a thermal viewpoint, the unit shield
is analyzed with MCNP4C using the energy deposition tally. A split scatter shield is then
evaluated and the values are compared to the unit shield to determine whether there is a

significant reduction in the energy transferred to the shield.

Split Scatter Shield Design.

The process of determining an individual parameter cannot be completed without
direct coupling to the other parameters in the split shield. These parameters are evaluated
individually to provide insight for the proper coupling of the system to achieve an
optimized shield. The split scatter shield design process can progress forward by looking
at the shield and cone angle spacing study to provide initial input into the system. This
will provide an estimate of the particles that can be lost through leakage alone. The next
step is to select materials that will maximize the reflection of particles back toward the
source plane with a minimal amount of mass. The selection of the materials must then be
balanced with the shield spacing to ensure that the particles that are reflected are given an
adequate chance to leak before reaching the next shield section. Furthermore, the
performance of the shield must be balanced with the increased mass of the shield as split
sections are moved further from the source plane and are required to increase in radius to
shield the entire shadow.

A small experiment was performed to determine whether there is an optimum
split shield configuration. In this experiment, the unit SEHPTR shield was used, except

that portions of the lithium hydride shield were split off and moved closer to the payload.
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The change in the neutron fluence and photon dose were then measured and plotted to
demonstrate the effectiveness of splitting some material from the original shield and
moving it backward. This experiment looked at two different cases. The first case
removed a quarter of the lithium hydride material and moved it closer to the payload. For
comparison, the new split shield section was reduced in thickness so that the overall mass
of the unit shield was conserved at 850 kg. A diagram of this shield configuration is

shown in Figure 13.

Drose Plane
Shield Shadow Boundary
Source Plane
Eeactor Wacuum acuum
E,C TRl

For this design a specified armmount of LiH is remowed from the original
shield and mowed toward the dose plane. The mass of the original unit
shield is conserved by appropriately thinning the split portion of the LiH
shield as it moves toward the dose plane.

Figure 13. Approach to Searching for a Split Shield Optimum
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IV: Results

The evaluation of the split scatter shield provided some challenges that were not
foreseen when the research was first started. The benchmarking efforts for
“Split_Shield” indicated that it would not accurately predict the neutron and photon flux
values making it unusable for the remainder of the study. Regardless, this research did
produce a set of shield design parameters that are applicable for a variety of space

shielding applications and were useful in evaluating the split scatter shield.

Benchmarking “Split_Shield”

Benchmarking for “Split_Shield” was accomplished by comparing results from
MCNP4C with “Split Shield”. All of the results shown in this benchmarking section are
given for the most recent version of the “Split Shield” code. Therefore, all of the
corrections that are discussed in the next section regarding code troubleshooting have
been implemented.

Three separate benchmarking tests were selected to evaluate “Split_Shield”. The
first benchmarking test was used to determine the ability of “Split_Shield” to replicate
the neutron flux as reported in MCNP4C. This test evaluated a split shield that consists
of 80 cm of vacuum and 20 cm of carbon. For each new shield evaluation, the carbon is
divided into an increasingly larger number of shield sections. The unit shield is 40 cm of
vacuum, 20 cm of carbon, and 40 cm of vacuum. The most split shield is 13.33 cm of
vacuum followed by 4 cm of carbon, repeated for 5 shield sections. The total length of

the shield however, is always maintained at 100 cm.
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Table 5 lists the dimensions for all of the shields, as well as the neutron and

photon flux distributions from both MCNP4C and “Split_Shield”. This data shows that

“Split_Shield” overestimates both the neutron and photon flux for the unit shield. The

neutron flux matches the MCNP4C results somewhat closely for two, three, and four

section split shields. For shields with more than three sections however, the

“Split_Shield” neutron flux begins to increase greater than the MCNP benchmark.

Table 5. Split_Shield Benchmarking Data for Carbon Shield

# Shield Vacuum Carbon Width | Split_Shield n | MCNP n Flux
Sections Width [cm] [em] Flux [n/cm”2- [n/cm’-sec-sre n]
sec-src n]
1 - Unit 40 20 8.450E-6 6.707E-6
+/-1.31E-7
2 26.7 10 5.690E-6 5.510E-6
+/- 1.12E-7
3 20 6.7 4.850E-6 5.228E-6
+/- 1.11E-7
4 16 5 4.860E-6 5.165E-6
+/- 1.12E-7
5 13.3 4 5.160E-6 5.131E-6
+/- 1.01E-7
# Shield Vacuum Carbon Width | Split_Shieldy | MCNP y Flux
Sections Width [em] [cm] Flux [y/em*2- | [v/em’-sec-sre]
sec-src V]
1 - Unit 40 20 1.260E-5 9.540E-6
+/- 1.48E-7
2 26.7 10 1.410E-5 9.774E-6
+/- 1.55E-7
3 20 6.7 1.780E-5 9.761E-6
+/- 1.62E-7
4 16 5 4.820E-5 9.815E-6
+/-1.61E-7
5 13.3 4 Diverged 9.839E-6
+/-1.59E-7

The MCNP4C results indicate an initial decrease in the neutron flux with shield splitting,

and then a leveling out for shields that are split more than three times. The
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“Split_Shield” results for photon flux drastically depart from the MCNP results after two
shield sections, and always over predict the values. The MCNP4C data indicates that the
photon flux should remain fairly constant for all shields, no matter the amount of
splitting.

The second benchmarking test, evaluated the effectiveness of “Split Shield” for
gamma shielding applications. This test was identical in style to the first test, except that
now tungsten was used as the shielding material. The overall dimensions of the unit
shield were 46 cm of vacuum and 4 cm of tungsten, with the total shield width fixed at 50
cm. The process for splitting the shields was the same as the one used for the tests with
carbon.

Table 6 lists the dimensions for the tungsten shields, and the results from
“Split_Shield” and “MCNP4C”. “Split Shield” gave results indicating a decrease in the
neutron flux with shield splitting, while MCNP4C shows that the neutron flux is
relatively unaffected by shield splitting. The photon flux from “Split Shield” decreases
until the splitting exceeds three shields, at which point the flux levels off. MCNP4C
indicates that the photon flux should also be unaffected by the splitting of the shields.

The final benchmarking test evaluated the ability of “Split_Shield” to accurately
predict the neutron and photon flux distribution for laminated shields with different
materials. This test evaluated a shield composed of 80 cm vacuum, 18.5 cm carbon, and
1.5 cm tungsten, with the total shield width always fixed at 100 cm. The splitting

procedure from the first two tests was again used to create four separate shield cases.
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Table 6. Split Shield Benchmarking Data for Tungsten Shield

# Shield Vacuum Tungsten Split_Shield n | MCNP n Flux
Sections Width [cm] Width [em] | Flux [n/em~2- | [n/em’-sec-sren]
sec-src nj
1 — Unit 23 4 2.76E-5 2.89E-5
+/- 3.04E-7
2 15.33 2 2.40E-5 2.85E-5
+/- 2.98E-7
3 11.5 1.33 2.09E-5 2.87E-5
+/- 3.50E-7
4 9.20 1 2.06E-5 2.84E-5
+/- 3.45E-7
5 7.67 0.8 1.90E-5 2.85E-5
+/- 3.44E-7
# Shield Vacuum Tungsten Split_Shield y | MCNP v Flux
Sections Width [cm] Width [cm] Flux [y/cm~2- [y/em’-sec-src ]
sec-src y]
1 — Unit 23 4 1.59E-6 1.88E-6
+/- 7.58E-8
2 15.33 2 1.14E-6 1.90E-6
+/- 7.24E-8
3 11.5 1.33 8.95E-7 2.10E-6
+/- 8.38E-8
4 9.20 1 9.34E-7 1.93E-6
+/- 7.57E-8
5 7.67 0.8 8.65E-7 1.93E-6
+/- 7.21E-8

Table 7 provides a list of the shield dimensions and performance values from both

“Split_Shield” and MCNP4C. For the unit and two-section shield, “Split_Shield” comes

fairly close to matching the neutron flux values given by MCNP4C. The last two shields

however, diverge using “Split_Shield”, while MCNP4C shows a continuous gradual

decrease in neutron flux. The photon flux values from “Split Shield” do not show a

general trend, but instead go up for two shield sections, drop below the unit shield flux

for three sections, and then increase slightly for four sections. MCNP4C however,
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indicates that the photon flux should remain relatively unchanged, regardless of the shield

splitting.
Table 7. Split Shield Benchmarking Data for Laminated (C-W) Shield
# Shield Vacuum Carbon Tungsten | Split_Shield | MCNP n
Sections | Width [em] | Width [cm] Width n Flux Flux [n/cm’-
[em] [n/cm”2-sec-src sec-src nj
n
1 40 18.5 1.5 5.39E-6 5.57E-6
+/- 1.26E-7
2 26.7 9.25 0.75 5.15E-6 5.02E-6
+/- 9.73E-8
3 20 6.17 0.5 7.76E-6 4.77E-6
+/- 1.03E-7
4 16 4.63 0.375 1.24E-5 4.70E-6
+/- 9.75E-8
# Shield Vacuum Carbon Tungsten | Split_Shield MCNP vy
Sections Width [em] | Width [cm] Width v Flux Flux [y/em*-
[em] [y/ecm”2-sec-src sec-src v]
7l
1 40 18.5 1.5 2.34E-6 2.09E-6
+/- 6.30E-8
2 26.7 9.25 0.75 3.93E-6 2.14E-6
+/- 5.77E-8
3 20 6.17 0.5 1.37E-6 2.18E-6
+/- 6.43E-8
4 16 4.63 0.375 1.80E-6 2.19E-6
+/- 6.19E-8

The three experiments used to benchmark “Split Shield” indicate that the

program is not effective at predicting the neutron or photon flux in a split scatter shield.

The behavior of the neutron flux in the first and third tests indicate that there may be a

numerical instability in the program logic, causing the results to diverge. The error in the

results increases as more shields sections are evaluated, which also indicates that maybe

there is some error in each shield section material.
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Methods Used to Troubleshoot the “Split_Shield” Program.

Another series of tests were performed in an attempt to fix “Split_Shield”, or at
least bring it into better agreement with MCNP4C. The first possible source of error was
in the source term distribution. At the time of code development, the SEHPTR source
term was not complete, so an estimation of the source term had to be substituted for
MCNP4C evaluations. The material data tables that were created for “Split_Shield” used
an exponential distribution of the source from the centerline of the shield out to the edge.
This results in the highest flux at the center of the shield with little or no flux out at the
shield’s edge. From the SEHPTR source term however, it is shown that the source
decreases more like a cosine function from the shield centerline to the edge. For
benchmarking purposes however, the choice of distribution shouldn’t matter as long as it
is consistently used in both MCNP4C and “Split Shield. The greater problem with the
distribution is that “Split_Shield” doesn’t account for changes to the flux profile as
additional shielding sections are used.

All of the material data tables in “Split Shield” are created using MCNP4C
calculations on separate shields with increasing thickness. Therefore, the source
distribution for the 1 cm shield is the same as the distribution for all other shields. An
MCNPA4C calculation was performed to evaluate the shape of the flux after passing
through a single shield section. The result indicates that the flux profile exiting a shield
section is flattened across the shield and the energy distribution is softened. Since
“Split_Shield” always uses the source distribution for every shield section, this will lead
to an overestimation of the shield flux and energy profile when compared to MCNP4C

results.
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Another factor that “Split_Shield” is insensitive to is the direction particles are
heading after they pass through a shield section. When particles exit a shield section in
“Split_Shield” they are headed in a variety of directions. At this point “Split Shield”
goes to the next shield section, where the starting source distribution is again applied.
This doesn’t take into account the particles that were going to leave the problem after
interacting in the first shield, or particles that were scattered back toward the dose plane.
The only information that is carried from shield section to shield section is the total
fraction of particles that crossed the material boundary. As the split shield gets longer,
the shield sections will get larger in diameter. This mean that there is a higher probability
that particles will remain in the shield, rather than leak out the boundaries. Split Shield”
will not recognize this however, since the individual shield sections always start with a
radius of 52.7 cm and increase based on the length of the section. MCNP4C does not
suffer from this problem, because all particles are continuously tracked until they leak
from the problem, are absorbed, or killed by Russian roulette. This effect causes the
particle flux reported by “Split Shield” to be lower than MCNP4C, with the difference
increasing as more shield sections are used. A method to determine the difference
between the MCNP4C flux and the “Split_Shield” flux is to run particles through a
material and then take tallies at increasing distances from the shield, as shown in Figure
14.

The results from Figure 14 imply that the “Split_Shield” values could be brought
into agreement with MCNP4C by multiplication with an appropriate exponential factor.
Fitting exponential curves to both sets of data and comparing the difference provided the

multiplication factor required. The same technique was applied for the backward
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transmission of particles to find a backward multiplication factor. The “Split Shield”

program was then modified with these factors and the benchmark tests performed again.

Neutron Flux Results using '"MCNP4C' vs. 'Split_Shield' in Carbon
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Figure 14. Difference in Flux Profile Between MCNP4C and “Split_Shield”
One final issue considered, was the effect of error propagation from the material
data files into the “Split_Shield” results. A certain amount of stochastic error is
associated with MCNP4C tallies, which was recorded when the material data files were
created. Each time a mathematical operation is performed on numbers that contain
uncertainty, the uncertainty in the solution is increased. Therefore, as the number of
mathematical operations increase, so does the uncertainty. Shield problems with long

convergence times increase the number of operations required, which can lead to more
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error and possibly a divergence in the results. Steps were taken to implement an error
handling routine into “Split Shield”. Due to time constraints however, the effect of error
on the results was not fully explored and the error handling routine was not verified.
Ultimately, “Split_Shield” had to be set aside so that research into the optimum shielding
parameters could be pursued further. Therefore, all of the split scatter shield experiments

were conducted using MCNP4C.

Split Scatter Shield Parameter Study

Shield Spacing Parameter.

The relationship between the shield spacing, half cone angle and the loss of
particles was studied by plotting the probability of particles missing a shield given a
shield separation distance. Such a plot is shown in Figure 15. This plot shows that the
probability of a particle hitting the target shield from either direction decreases faster
initially and then begins to fall off at a constant rate as the shield separation distance is
increased. Furthermore, if the required shadow shield angle is reduced the leakage is
increased for a given shield separation distance. For a 21-degree half cone angle, about
half of the particles miss the target shield for a spacing of just 20 cm. A designer may
choose to design a shield that has many split shield sections with short separation
distances. This has the effect of losing half the particles from forward leakage from
shield to shield. If the shield material is effective at reflecting radiation, it may be

possible to quickly remove a large quantity of particles from the system.
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Probability of a Particle Hitting Target Shield

Probability of a Particle Hitting a Target Shield from a Source Shield
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Figure 15. Effect of Shield Spacing and Half Cone Angle on Particle Leakage

Material Thickness Parameter.

The material thickness study provided insight into the best selection of materials

for the use in the split scatter shield. Table 8 lists the attenuation thickness values at

which 85% of the maximum neutron backscatter possible for each material is achieved.

The percent flux reduction shows how much a material was able to reduce the neutron

flux at this thickness.

Table 8 indicates that beryllium is the best material for backscattering neutrons,

although the 85% backscatter thickness is at 10 cm. The backscatter for 35 kg of

beryllium, which is equal to the 85% backscatter mass of lithium hydride, is only 38.2%.

From a mass standpoint, the best material for this shielding application for the materials

listed in Table 8 is LiH.
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Table 8. Material Thickness Parameters for Neutron Backscatter and Attenuation

Material Maximum % 85 % Back % Flux Mass of Shield
Back Scatter Scatter [cm] Transmitted at Source Plane
[kg]
LiH 51 5 60.2 35
ZrH, 53 60.0 192
Be 80 76.1 172
C 72 76.4 203
B,C 56 62.2 89
Steel 69 9 67.3 651
\\ 55 3.2 55.2 545

Table 9 shows how each of the materials performs for backscattering and

attenuating gamma rays. The layout of the table is the same as Table 8, except that the

values are for gamma ray shielding.

Table 9. Material Thickness Parameters for Gamma Backscatter and Attenuation

Material Maximum % 85 % Back % Flux Mass of Shield
Back Scatter Scatter [cm] Transmitted at Source Plane
kgl
LiH 31 19 35.3 147
Z1H, 19 1.5 59.2 71
Be 40 12 38.7 209
C 37 9 443 149
B,C 39 7 46.7 159
Steel 25 1 64.7 68
\\ 12 0.3 56.6 50

Table 9 indicates that from a mass standpoint, steel or ZrH, may be the best materials for

shielding gamma rays in a split shield environment. With such low backscatter values

however, it appears that splitting the gamma shield will not be as effective as for neutron

shielding. The splitting of the gamma shield is investigated further in the section on the

shield splitting, and will be discussed at that time.

The particle scattering parameter studied using plots similar to Figure 10, did not

appear to change significantly for an increase in shielding thickness. In fact, increasing

the shield thickness flattened the angular profile of the current for both particle types.
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The particles scattering toward the center of the shield tended to increase with the
addition of material, while the particles that were scattering into the region from 45 to 90
degrees decreased. Overall, the total change in the particle direction was not significant.
The largest scattering angle for the neutron source was between 22.5 and 45 degrees,
which accounts for 42.4% of the total angular distribution. When 16 cm of LiH is used
as a shield, the scattering into this angle range is reduced to 40.8% of the total angular
distribution. The experiments conducted for photons indicate the same general trends.
The overall indication from the attenuation and scattering parameter studies is that for
split shield applications, the shield sections should be kept relatively thin when compared
to the layers in the unit shield. It also appears based on the scattering study (Figure 10),
that these materials will not be particularly effective at changing the direction that

particles are scattered as they pass through a shield section.

Number of Shield Sections Parameter.

The results of this experiment indicate that splitting the radiation shield does
produce an overall reduction in the neutron flux. Figure 16 shows the change in flux at
the dose plane as the number of split shields is increased. Splitting the shield into two
sections reduces the 0.1 MeV neutron flux by approximately 44%, with an increase in
shield mass of 6%. This increase in mass comes from moving the second shield section
closer to the dose plane, which will increase the required shadow radius. The effect of
shield splitting on the gamma dose is nearly identical to the neutron flux, with the total

dose reduced by approximately 43% for two shield sections.
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Effect of Shield Splitting on Neutron Flux
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Figure 16. Effect of Shield Splitting on the Neutron Flux

Optimum Shield Geometry.

For a SEHPTR design, the distribution of particles (similar for both neutrons and
gamma rays) along the face of the source plane is highest between 0 and 30 cm, which
accounts for 90% of all particles leaving the source. Figure 17 shows the distribution of

source particles as a function of distance from the shield centerline.
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Source Flux Distribution for Photons and Neutrons
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Figure 17. Neutron and Photon Flux Profiles at the Source Plane

The unit shadow shield designed originally for the SEHPTR has a shadow angle
of 21 degrees [8:10]. This means that separating the source plane by 3475 cm from the
dose plane without shielding, will remove all but the 15% of the total flux that is
streaming forward between 0 and 22.5 degrees. Since the shadow angle between the
source and dose plane is 21 degrees, most of this forward flux will not diverge out of the
shadow radius. This means that even the best geometric configuration will require
shielding for 15% of the total flux.

The final observation regarding the shielding geometry is also related to the 21-
degree source-to-dose plane shadow angle. There exists a location somewhere on the
source plane where particles streaming into the angle greater than 22.5 degrees will leak

from the shadow angle of 21 degrees at exactly the source-to-dose plane separation
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distance of 500 cm. This location is found by determining the radius of the dose plane at
500 cm, which is 242 cm. The radius that is swept out by the 22.5-degree angle at 500
cm is calculated to be 207 cm. Subtracting the dose plane radius by this swept out radius
sets the boundary on the source plane for particles that will not leak from the shadow at
500 cm. This source plane radius is calculated to be 35 cm. This process is shown in

Figure 18.

Source Plane BRI

A particle located 35 cm from the centerline axis
on the source plane will leak from the system at
300 cm if it departs at an angle equal to 22.5
degrees.

Figure 18. Location of Source for Particle Leakage at Exactly 500 cm
Intuitively it would seem that the shield radius would only have to extend far
enough to absorb the particles that will not leak before the dose plane is reached. This is
not the case however, because the small fraction of particles that are streaming forward at

the edges of the source planes will not be attenuated and greatly increase the tally at the
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dose plane. A test was conducted to demonstrate this effect, by taking the unit shield and
removing the material around the edge so that the front face of the shield only saw the
forward scattered particles from the 35 cm radius source plane. Assuming a 50 cm
source plane, this left a 15 cm radius that saw limited or no shielding at all for forward
sourced particles. A series of ring detectors was then placed along the dose plane to
determine the radius that was still within the acceptable limits. This shield configuration

can be seen in Figure 19.

Dose Plane

Shield Shadow Boundary

Source Plane T

WVacumm

Maote: Figure is not to scale.

In this design, material has been remoned frora the outer portion of the radiation shield

to allow particles that begin on the source plane at radii greater than 35 cm, to escape
before reaching the dose plane. This method does not work howeser, becanse foraard
streatving particles sourced at radii greater than 35 cin ave no longer shielded as effectively
and becotne the prime contributors to the doge at the dose plane.

Figure 19. Shield Configuration for Preferential Leakage Study
For a unit shield, the dose plane radius is 484 cm, but the removal of shield
material to allow for leakage reduced this radius to approximately 100 cm. This would

indicate that not only are the forward source particles an issue, but also particles that are
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sourced in at an angle and have less material to travel through before reaching the dose
plane. So, to effectively shield the dose plane, at least the first shield section must cover

the entire shadow angle.

Gamma Shield Placement.

The gamma shielding material used for this parameter study was tungsten.
Placing the gamma shield behind 4 cm of neutron moderating material proved to be the
optimal configuration for the tungsten. At this location, the photon dose was reduced by
a factor of two when compared to the gamma shield material placed on the surface of the
shield. The difference in mass between the two locations was only 20 kg. Again this
result correlates with the design parameters used for the SEHPTR shield, which used 2

cm of tungsten placed 4 cm below the shield surface.

Energy Deposition in the Shields.

The total energy delivered to a two-section split scatter shield was 12% less than
the energy delivered to the unit shield. This result implies that some of the B4C used in
the shield due to thermal constraints might be exchanged for LiH, which is about half as

massive for approximately the same neutron backscatter and attenuation performance.

Split Scatter Shield Design.

A split scatter shield was constructed using some of the design parameters listed
in this section and then compared to the unit shield. This design split the SEHPTR unit
shield evenly into two pieces and separated them by 50 cm. The source-to-shield
separation distance was maintained at 20 cm, for the sake of comparison. An illustration

of this shield design is shown in Figure 20.
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Figure 20. Design Layout for Splitting the Unit Shield
Although the split shield was able to meet the limits required at the dose plane, there was
a 25% increase in the mass of the shield. This increase in mass comes from the
requirement that the entire shadow angle must be shielded, and is given by the following
equation:

%:277551&%2(9) (18)

where:
t = Shield Thickness [cm]
h = Distance from Source Plane to Front Face of Shield Section [cm]
0 = Half Cone Angle of Shield Shadow

Equation 18 indicates that an increase in source-plane to shield-face distance will be

accompanied by a direct increase in the mass. Splitting the shield into two sections
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pushes the second shield section 87 cm from the source plane. At this distance, the front
face radius of the second shield is 86 cm.

The next experiment focused on keeping the gamma shield material together,
rather than splitting it into sections. Because the gamma shield material has such a large
impact on the shield mass, keeping it together and placing it as close to the source plane
as possible should reduce the mass. Furthermore, the shield splitting parameter study as
well as data from benchmarking ‘Split Shield’ indicated that the dose reduction from
splitting the gamma shield was negligible. Instead, the B4C and W layers were
maintained in the same position as the unit shield, while a portion of the LiH was split
from the shield and pushed backward. This shield configuration can be seen in Figure
13, and the procedure is listed in Chapter III under the heading ‘Split Scatter Shield
Design’. The results of this study are shown in Figure 21.

This plot shows that the neutron shielding effectiveness is reduced when half of
the LiH shield is split from the unit shield and moved toward the dose plane. When only
a quarter of the LiH is split however, the neutron fluence remains relatively constant
while the gamma ray dose is reduced by 14% at a 50 cm shield separation distance. This
reduction in the gamma dose now offers a degree of freedom in the placement of the
gamma shield. The gamma shield can be moved closer to the source plane, until the

original gamma dose is achieved.

61



Effect of Splitting a Fraction of LiH from the Unit Shield and Moving It Toward the Dose Plane While
Conserving Shield Mass
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Figure 21. Effect of Splitting LiH from Unit Shield and Conserving Mass

An additional plot is required for this study, that will show whether the neutron
fluence will decrease for shields that are less than a quarter of the LiH shield. The next
step in this study is to split multiple layers of LiH from the unit shield and study the
effect of moving them closer to the dose plane while conserving mass. This study
indicates that it should be possible to reduce the mass of the radiation shield by moving
the gamma shield closer to the source plane, while splitting the neutron shield. The
neutron shield sections are then moved closer to dose plane, but no mass penalty is

imposed because they are thinned to conserve mass.
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V: Conclusions

“Split_Shield” Conclusion

Although “Split_Shield” ultimately did not work, its development was important
in the creation of the material data files and for understanding some of the basic
difficulties in designing radiation shields. MCNPA4C is a very robust code, and provides
the user with many capabilities, but the relatively long times required to operate the code
and construct the input decks limited the total amount of research that could be
conducted. In the future, MCNP4C should still be used to model the final three-
dimensional shield, but a code needs to either be developed or used off the shelf (FEMP-
2D, TWODANT), that will decrease the analysis time. A discrete ordinates technique
would only require two-dimension analysis due to the shield symmetry. These
techniques introduce some difficulties of their own, but developed correctly would
significantly speed up the analysis.

The use of simple algorithms to explore shield design parameters is also highly
suggested. The parametric study using the code developed by Mathews (Appendix D)
was only applied very late into the study. This program uses a very simple Monte Carlo
technique, but the results provided a large degree of insight into developing a successful
split scatter shield. The code in Appendix D could be further modified to include
material cross sections to study first flight escape probabilities for a two-shield system.
Further modifications could explore the problem when a third shield is added to the

problem. Simplifying the problem and custom designing algorithms to analyze the

63



problem would have provided more insight into the problem, without the complexity

required when using a large program like MCNP4C.

Radiation Shield Parameters

Although the parameters in this study are tailored for the SEHPTR, many of the
values and the techniques that were characterized can be applied to a variety of SNPS
shield design problems. The parameters studied include the shield spacing for split
scatter shields, material selection, geometry, and gamma shield placement. Additionally,
the energy deposition in the split scatter shield was examined and compared to the unit
shield.

Several important insights were gained from this study that can be beneficial for
future research. The first and most important aspect is that this shield design problem is
inherently coupled, and any attempts to optimize the system as a compilation of
uncoupled parameters will lead to poor results. The independently studied parameters in
this research are used to provide a staging ground for designing a coupled shield.

For the materials studied, LiH is the best option for a reduced mass neutron
shielding material. The amount of backscatter achieved with minimal mass was
unmatched by any of the other seven candidate materials. The best selection for gamma-
shielding material is slightly less obvious as steel, ZrH,, and tungsten all have desirable
properties as shields. Because scattering of the gamma rays is more difficult to control, it
seems likely that the best option for the gamma shield is to keep it lumped as a single

material. This is also important, because the mass of the gamma shield will ultimately
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contribute to a large portion of the overall shield mass. If the gamma shield is lumped, it
can be placed as close to the source plane as possible.

The results from splitting part of the LiH from the shield and moving it backward
while conserving mass indicate that the gamma dose will decrease as the split shield
section is moved closer to the dose plane. A new step in the design would be to fix the
split LiH shield at some distance from the primary shield. Then the gamma shield could
be moved closer to the reactor face until the gamma dose climbed back up to the original

unit shield values. A diagram of this procedure is shown in Figure 22.

Diose Plane
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Thiz will have the effect of reducing the size of the garmma shield which
Will reduce the overall shield mass.

Figure 22. Future Study on Gamma Shield Placement After Splitting LiH
Although this research did not produce a mass optimized split scatter shield, the
parameter studies on the shield spacing and half cone angle, material attenuation

thickness, particle scattering, and geometry have all provided evidence that this shield
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may be practical for reducing the overall shield mass while maintaining the performance
of the unit shield. The final study that involved splitting off a portion of the LiH shield
demonstrated that the neutron fluence remains relatively constant when a quarter of the
shield material is split and moved closer to the dose plane. Furthermore, the gamma dose
was shown to decrease when both a quarter of the LiH was split and moved as well as
when half of the LiH was split and moved. As a result, it seems that a there is an
optimized solution for the split scatter shield and future research should be conducted to

determine where the optima exist.

Recommendations

Computer Code Recommendations

The acquisition or development of a computer code that will speed up the shield
analysis time is desirable for future research on the split scatter shield. Additional
debugging work on “Split Shield” is desirable, because the program offers a wide range
of possibilities related to the capabilities of MCNP4C. One function that needs to be
replaced in the program is the method for calculating the particle loss when streaming
across a vacuum. The simple Monte Carlo code provided in Appendix D could be
implemented into the code to provide these simple calculations. Provided that the code
can be fixed, the next step would be to incorporate multi-energy group transmission and
reflection coefficients into the material data files. Material data files could be created
using other tallies as well, including the particle angular distribution.

One feature of MCNP4C that was tested, but not applied is the concept of weight

windows [17:2 137-141]. Weight windows are similar to the importance values for
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individual cells, except that they provide a window on the limits for splitting and roulette,
rather than a cutoff value. One advantage to using weight windows, is that MCNP4C has
a built in weight window generator, which most of the time can generate the weight
windows automatically [17:3 43-44]. This works by first running the problem with a
guess for the importance values. MCNP4C then builds an importance function as the
problem runs and from that determines what the windows for each cell should be. An
improved importance function would reduce the variance of the results, with fewer
particles. This technique is one way that the effectiveness of MCNP4C could be
improved in shielding calculations.

Finally, work should be taken toward developing simple algorithms that can
provide insight into key shield design parameters. These algorithms do not need to be
extremely complex, but should be useful for indicating trends that will help in
understanding how a split scatter shield functions. Ultimately the limited results in this
research were due to a combination of MCNP run times as well as time lost trying to
decouple and solve a system that is inherently coupled. Each shield configuration
required anywhere from 30 to 90 minutes to build a MCNP input deck. The deck build
time was directly related to the complexity of the shield design and the amount of
geometry splitting required to attain satisfactory results. Once the deck was built, MCNP
took on average 30 to 60 minutes per shield running on two computer systems. The first
is a Sun Enterprise 450, running 4 processors at 400 MHz each. Each of the processors is
a 4 Ultraspark II, with 4 megabytes of Ecache per processor. For this research all
problems were run linearly assigning one process per processor. The total memory for

this system was 2 gigabytes. The second machine was an Ultra Spark 10 operating at 440
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MHz. The processor is an UltraPark2i, with 2 megabytes of Ecache. The total memory

available for this system was 1 gigabyte.

Radiation Shielding Recommendations

There were several tests that were not performed, or only examined briefly that
could use further inspection. The first set of tests further investigates the heat deposition
in the split scatter shield. For high power reactors, the split scatter shield may be
advantageous since it will absorb less energy. A more detailed examination of the heat
deposition is required, along with a detailed analysis of the thermal transport of the
energy. Another study of interest is the effect of the radiators on the shield performance.
This should be considered for split scatter shield applications since it could be an issue
with particles that normally should leak but don’t, because they get scattered from the
heat pipes. It may also be worthwhile to rerun the angular distribution tests, except with
a refined set of angles. This would better characterize where the particles are traveling
and possibly new ways to optimize the geometry.

A search for split shield optima should be undertaken as well to determine
whether or not this design is viable for replacing the unit shield. A study should be
conducted, where the LiH in the unit shield is split multiple times and each section is
moved back a given distance while conserving the mass of the unit shield by thinning the
split sections. The data from the material attenuation study and the shield spacing study
may be helpful in this portion of the design to give ballpark figures on the amount of
shielding required. It is known for example that the 10-year neutron fluence must be

reduced by about 10 orders of magnitude to meet the dose limits for the payload. The
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technique used for examining the effect of shield separation distance on particle loss can
be used to select appropriate shield spacing. The material attenuation data given from
plots similar to Figure 7 can then be used to select a material thickness that will maximize
neutron reflection from shield to shield. Combining this data allows the designer to
estimate the reduction in neutron fluence attained from crossing a region of vacuum and
interacting in the shield material. The process is then repeated for the next shield section,
carrying on the particles that managed to survive from the last set of interactions. This
method makes it possible to get a quick estimate for how many shield sections may be
necessary and whether they will fit the size and mass constraints imposed by the

designer.

Split scatter shielding offers the potential for reducing the radiation shield mass,
and several optima appear to exist for such a design. This research has provided a
staging ground from which future studies can be conducted. Once all of the shield
parameters have been coupled and studied, it will then be possible to design a shield and
determine whether or not it can be used as an alternative to the unit shield.

Finally, it should be noted that this research focused only on the radiation
shielding properties of the system. Mechanical performance and stability were not
examined, and are a topic for future research as well. A wide range of materials was
avoided in this study that may be advantageous for enhanced scattering. Specifically the
organic shield materials such as polymers are candidate materials because of their high
hydrogen content. If split scatter shielding can reduce the energy deposited in each

shield section, materials such as these may become applicable. A more detailed study of

69



this unique shield design is therefore necessary to study the entire system in its coupled

form.
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Appendix A: Introductory Tutorial for MCNP-4C

This appendix is included to provide a short explanation of the MCNP4C features
used in this research so that discussion is understandable throughout the document. A
full description of MCNP4C'’s capabilities can be found in the reference documentation

that comes with the code [16].

Tallies.

Tallies are used by MCNP4C to allow a user to specify a point, ring, area, or
volume that particles are passing through and provide an estimate of how they are
distributed. The type of particle distribution is specified by the user and is in the form of
values like current, flux, or energy deposition. A variety of tallies and ways to modify
them are described in the reference documentation [16:2 76-99].

Three tally modifiers of particular importance in this research are the energy and
angular distribution modifiers and the tally multiplication modifier. The energy modifier
specifies how a given tally is to be divided into energy bins [16:3 83]. If no modifier is
present, then all particles of all energies contribute to the tally. If for example, two
energy groups are needed, then the user inputs a cutoff value which separates the high
and low energy particles. All particles below this cutoff will contribute to the tally from
zero to the cutoff energy, while all particles with energy above the cutoff will be
discarded. As more groups are added, the cutoff values bound the energy bins of interest.

The angular distribution modifier specifies how the particles at a tally are

distributed by angle. This modifier works in the same manner as the energy tally, with
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the angle specified in terms of Y (L = cos(0)) [16:3_85]. If for example, two equal
angular bins are desired, then the user specifies a modifier at zero. All particles that
scatter into the angle between —1 and 0 will be placed into one bin, and all particles that
scatter into the angle between 0 and 1 will be placed into the other bin. The angular
distribution modifier can only be used with the current tally, since it is the only tally that
is angle dependent. Both the energy and angle tally modifiers were used throughout this
study to understand how the particles are distributed after they interact with different
shield sections.

The tally multiplier is a modifier that was used to convert a photon flux into a
photon dose in silicon [16:3_87]. This conversion is achieved by using the tally
multiplier card to convert the photon flux to a photon-heating tally in silicon (units of

MeV/g). The conversion is then done by the following equation:

T,CN ,nx10
A

Dose =

(1)

where

Tp = Photon Heating Tally [MeV/g]
C = Normalization Constant = (1.602x107 ergs/MeV) / (100 ergs/g)
Note: 1 rad = 100 ergs/g
N, = Avagadro’s Number [atoms / mol] = 6.02x10%
N = Number of Atoms per Molecule (=1 for Silicon)
A = Atomic Weight [g / mol] (=28 for Silicon)

The use of the photon dose is more practical in shielding calculations since damage to the
payload is more understandable in terms of the energy absorbed, rather than the flux of

photons incident on the system. Because neutrons will primarily cause damage through
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lattice dislocations by scattering and transmutations by neutron capture, the time
integrated neutron flux is a better estimator for neutron damage.

For this research, ring detectors and surface tallies were used to provide
information about the current, flux, and dose at different locations within the shield and
from the source. Surface tallies represent the distribution of particles at a surface located
in the shield. A ring detector is a form of the point detector that can be used in situations
where the geometry is symmetric about the coordinate axis [16:2 _88-91]. Contributions
to a point detector tally in MCNP4C are determined at the source and every time a
particle has a collision [16:2_85-87]. When a particle interacts in MCNP4C, a new
direction is sampled that is influenced by the cross section of the atom or electron that the
particle interacted with. For a point detector, the program determines the probability of
the particle scattering toward the detector rather than in the sampled direction. This new
weighted pseudo-particle is then transported to the detector without interaction and its

contribution to the flux detector tally is given by:

- W -4
O (r, E t,u) = % 2)

where
W = particle weight
p(K) = probability of scatter toward the detector from current position
A =total number of mean free paths integrated over the trajectory
from the source or collision point to the detector
R = distance from the source or collision point to the detector
The Wp([) term dictates the weight of the particle that is leaving the source or

collision point, and the direction from which it leaves that point. The ™ term is how

much the pseudo-particle is attenuated between the source or collision point and the

73



detector and the 1/(2TR?) term is the divergence of the particle as it travels to the
detector. The actual source or collision particle continues along its random walk until it
reaches another collision where another pseudo-particle is created and transported to the
detector. A ring detector operates in much the same way, except that particles are
transported to the nearest point on a symmetrical ring. A more detailed description of
detector and tallies in MCNP4C can be found in the software documentation [16:2 76-

99].

Variance Reduction.

Since Monte Carlo tallies are nothing more than the mean occurrence of a given
process (i.e. flux, current) in a sample, the precision of a result will increase with the
number of particles sampled. The tradeoff is that more computer time is required to
achieve better statistics on a tally. Variance reduction techniques are methods used to
increase the probability that a particle contribute to the tally, without biasing the
statistics. MCNP4C offers a variety of these techniques to help reduce the computer time
required while increasing the precision of the results [16:3 32]. In this research the
methods of geometric- and energy-splitting with Russian roulette were used.

For thick shielding problems, there is a high probability that many of the particles
will be absorbed or scattered out of the shield before they reach the tally. If the materials
have high absorption cross-sections, then it is possible that out of millions of sampled
particles, only a few might contribute to the tally statistics. This problem is alleviated
using the method of geometric splitting with Russian roulette [16:2 133-135]. With this

technique, the problem is divided up into zones that are each assigned a relative
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importance. When a particle crosses from a region of low importance into a region of
high importance, it is split into several equally weighted particles, whose total weight is
equal to the weight of the original particle. Each of these particles is then tracked in
MCNPA4C individually like the original particle. When a particle travels from a region of
high importance to a region of lower importance, the Russian roulette game is played.
Russian roulette takes the ratio of the high and low importance values and then draws a
random number between 0 and 1. If the ratio of the importance values is greater than this
number, the particle is allowed to continue on with a weight that is diminished by the
importance ratio. If the number is less than the importance ratio, then the particle is
killed and no longer tracked. The method of geometric splitting with Russian roulette
ensures that there are always a large number of particles that will contribute to the tally.
Furthermore, particles that are headed into regions less important to the tally are less
likely to be tracked, which reduces computer-processing time. Energy splitting with
Russian roulette uses the same technique as geometry splitting, except the particles are

split based on their transition from one energy group to another [16:2 135-136].

75



O©CoO~NOOOUTA,WNPE

Fiss_src

O©CoO~NOOOUOTA,WNPE

10

12

2

el NeololoNoNoNeNe)

cz
cz
cz
cz
cz
cz
cz
cz
cz
cz
cz

-1.
-1.
-1.
-1.

- 3.

20
19
18
17
16
15
14
13
12
11
10

$F

R e R R R R

Appendix B: SEHPTR Input Deck in MCNP4C

Model s
- 16.
-14.
-13.
-13.
-13.
-13.
-13.
-13.
-13.
- 15. 5800
-9.
-9.
- 3.
-3.
-3.
-3.
- 3.
- 3.
- 3.
-3.

4935
0342
8300
6580
5092
3754
2638
1631
0712

9450
9450
0229
0229
0229
0229
0229
0229
0229
0229

8475
8475
8475
8475

0229

SEHPTR for use as source

-1
-2
-3
-4
-5
-6
-7 8 15
-8 9 15
-9 10 1
-10 11
11 12
13 1

-1 14 -
-13 16
-18 13
-18 13
-18 13
-18 13
-18 13
-18 13
-18 13
-18 13
-18 13
-18 13
18 -26
18 -26
18 -26
18 -26
18 -26
18 -26
18 -26
18 -26
-32 15
14 -25
14 -27
15 - 16
-14: 17

15
15
15
15
15
15

O©CoO~NOOUITWN

Surface Definitions for
uel Region

erm
-16 $Fuel Region
-16 $Fuel Region
-16 $Fuel Region
-16 $Fuel Region
-16 $Fuel Region
-16 $Fuel Region
-16 $Fuel Region
-16 $Fuel Region
5 -16 $Fuel Region 9

15 -16 $Fuel Region 10

15 - 16 $Heat Pipe R ng Inside

14 -16 $Heat Pipe R ng Qutside

15 $BeO Refl ector Bottom

-17 $BeO Refl ector Top

24 -17 -25 $BeO Refl ector Upper Side
14 -19 $BeO Refl ector Lower Side

19 -24 20 -22 $BeO Rel ector M ddl e
19 -24 21 -23 $ " "

19 -24 -20 22 $ " "

19 -24 -21 23 $ " "

19 -24 -21 22 $Wndows in BeO

19 -24 2023 $°" "

19 -24 21 -22 $ " "

19 -24 -20 -23 $ " "

27 -25 -29 30 $Quter Be Reflectors
27 -25 28 31

27 -25 29 -30

27 -25 -28 -31

-25 27 28 -30 $Voi d Bet ween Be

-25 27 29 -31

-25 27 -28 30

-25 27 -29 31

-16 $Control rod path

26 $Voi d region

18 -26 $Void region

32 -12 $lnner core BeOreflector

O~NOOOTPWNE

: 25 $Boundary of problem

reactor [cni
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12 cz 7.2 $Heat Pipe Location inside
13 cz 22.8 $Heat Pipe Location outside

14 pz 0 $ Bottom pl ane of reactor and dose pl ane
15 pz 10 $Bounds top surface of bottom BeO refl ector
16 pz 60 $Bounds bottom surface of top BeO reflector

17 pz 70 $ Top pl ane of reactor

18 cz 32.8 $Quter surface of BeO Reflectors

19 pz 17 $Bounds top surface of bottomside BeO reflectors
20 py O

21 1 py O $Describes planes that form BeO regions

22 pli100$%$""

23 l1pl1008%$" !

24 pz 47 $Bounds bottom surface of top-side BeO reflectors
25 kz 150 0.121 $Cone that bounds outer surface of reactor
26 cz 39.8 $Quter surface of Be Reflectors

27 pz 14 $Bounds bottom surface of Be reflectors

28 p 0.087 1 0 O $Describes planes that form Be regions

29 1p0.0871008%" !

30 p0.839100%" !

31 1p0.8391008%" "

32 cz 3.2 $lnner BeO reflector boundary

c Cylindrical Fission Source

node n p

c $This line defines the location of the source and the distribution

sdef Pos=0 0 35 Erg=Dl Rad=D2 Ext=D3 Axs=0 0 1 Par=1

SP1 -3 0.988 2.349 $Specifies sanpling fromthe Maxwel | Spectrum

SI2 10 20 $G ves the sanpling radii boundaries

SI 3 25 $Hal f height of the cylinder

SSW-14 $Wites particles heading bel ow surface 14 to file

C $This function tells MCNPAC to run the k-ei genval ue cal cul ation

KCODE | KZ=200 KCT=600

C $These next lines define the inmportance vales for the cells

imp:N3 5 5.2 54 56 58 6 6.2 6.4 3.5 2 2 8 1 1&
7.5 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 7¢&

7 3 0
imp:P4 6 6.5 7 7.5 8 85 9 95 6 4 4 12 3.5 2 9 &
2 2 2 2 2 2 2 2 1 11111115 4 450
c Define material and region inportance
c Material is defined by Atom c Number//Atom ¢ Weight and wt% in cel
ML 92235 0.0929 92238 0.0029 74000 0.7126 8016 0.1916
M 92235 0.1735 92238 0.0054 74000 0.4634 8016 0.3578
VB 92235 0.1802 92238 0.0056 74000 0.4428 8016 0.3715
w4 92235 0.1858 92238 0.0057 74000 0.4254 8016 0.3831
Vb 92235 0.1907 92238 0.0059 74000 0.4103 8016 0.3931
Vb6 92235 0.1950 92238 0.0060 74000 0.3968 8016 0.4021
Vg 92235 0.1987 92238 0.0061 74000 0.3856 8016 0.4096
VB 92235 0.2020 92238 0.0062 74000 0.3754 8016 0.4164
(%¢) 92235 0.2050 92238 0.0063 74000 0.3661 8016 0.4226
MLO 92235 0.1229 92238 0.0038 74000 0.6199 8016 0.2534
ML1 74000 0.5787 42000 0.3629 11023 0.0306 3007 0.0279
ML2 4009 0.5000 8016 0.5000
ML3 4009 1.0000

Cc
*trl 0 0 0 90 180 90 0 90 90 90 90 O
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WAG 55 0 0 $Calls the weight wi ndow generator

c Tally definitions

c These define ring detector tallies.

f5z:n 0.15 1.0 0.1 0.15 2.5 0.1 0.155.0 0.1 0.15 7.5 0.1
0.15 10.0 0.1 0.15 15.0 0.1 0.15 20.0 0.1 0.15 30.0
0.15 40.0 0 0.15 50.0 0

&
0.1 &

c

f55z:p 0.15 1.0 0.1 0.152.50.1 0.155.00.1 0.15 7.50.1 &
0.15 10.0 0.1 0.15 15.0 0.1 0.15 25.0 0.1 0.15 30.0 0.
0.15 40.0 0 0.1550.00

1 &

c

C $These define the energy splitting bins

e5 1E-5 5E-5 1E-4 5E-4 1E-3 5E-3 1E-2 5E2 1E-1 1.0 2.0 &
3.0 4.0 5.0 10.0

c

e55 1E-1 5E-1 1.0 2.0 3.0 4.0 5.0 7.5 10.0
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Appendix C: “Split_Shield” Program

This appendix contains the source code for the FORTRAN-90 program

“Split_Shield”. Program comments are preceded by an exclamation mark and are in

italics.

Pr ogr am Shi el d_Desi gn

| BRI Ik Sk Ik Ik b S b S O R Rk I S R R O R R R kS kR R

Title: Shield Design
By: Ben Kowash
Date: 30 Cct 01

Purpose: This code will speed up the design optinmization process for
devel oping a radiation shield. The problemsolved is one in which a
source is separated froma target by vacuum and a set of

shields. The intent, is for the shields to scatter radiation away
fromthe dose plane out into space.

Transport through the shield materials is handled by the MCNP-4C code.

| I I Sk b S O S S S I R S S S S

Use d obal Dat a
Use Initialize
Use Matrix Build
Use Eval _Shield

I mplicit None

Call InitializeData
Call Transmit_Matrix
Call Reflect_Matrix
Call Solution_Mtrix
Call Flux_Calcul ation
Call Shield Properties
Call Results

End Program Shi el d_Desi gn
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Modul e d obal Dat a
Implicit None

Real (8), Allocatable,
Real (8), All ocatabl e,
Real (8), All ocatable,
Real (8), Allocatable,
Real (8), All ocatabl e,
Real (8), Allocatabl e,
Real (8), Allocatabl e,
Real (8), Allocatable,

Char acter(Len=8), Allocatabl e,

mensi on( :
mensi on(:
nmensi on( :
mensi on( :
nmensi on( :
mensi on(:
mensi on(:
nensi on( :

(vlvivivavivRvRv)]

)
)
)

— N N

Di nen

re

VO

J_fwdN ! Neutron current right

J revN 'Neutron current |eft

J _fwdP ! Photon current right

J revP ! Photon current |eft
g_density ! Zone Density [g/cm3]
reg dim!Zone width [cm

lunme !'Shield volunme [cm3]

mass ! Shield mass [ kg]

si on

(:) :: reg_name !Zone name

I'Arrays that hold the transmission values & their errors

Real (8), Allocatable,
Real (8), All ocatable,
Real (8), Allocatable,
Real (8), Allocatable,

I'Arrays that hold the
Real (8), Allocatable,
Real (8), Allocatable,
Real (8), Allocatable,
Real (8), Allocatable,

lArrays that hold the

Di nensi on(:
Di nensi on(:
Di nensi on(:
Di nensi on(:

reflection
Di nensi on(:

Di nensi on(:
D mensi on(:

)

)
)
)

val ues
D nension(:,:)

)
)
)

T_fwdN
T revN
T _fwdP
T revP

and their errors
R fwdN
R revN
R fwdP
R revP

solution coefficients matri x

Real (8), Allocatable, D nension(:,:) sol _fwdN
Real (8), Allocatable, D nension(:,:) sol _revN
Real (8), Allocatable, D nension(:,:) sol _fwdP
Real (8), Allocatable, D nension(:,:) sol _revP
l'Arrays that hold the error matrix

Real (8), Allocatable, D nension(:,:) err_fwdN
Real (8), Allocatable, D nension(:,:) err_revN
Real (8), Allocatable, D nension(:,:) err_fwdP
Real (8), Allocatable, D nension(:,:) err_revP
l'Arrays that hold the source vector and error

Real (8), Allocatable, Dinmension(:,:) :: src_fwdN
Real (8), Allocatable, D nension(:,:) srcErr_fwdN
Real (8), Allocatable, D nension(:,:) src_fwdP
Real (8), Allocatable, D nension(:,:) srcErr_fwdP
Char acter (Len=12) shi el d_nane

Real (8) :: src_neutron ! Nunber of source neutrons
Real (8) :: src_photon ! Number of source photons

Real (8), Paraneter
Real (8), Paraneter
Real (8), All ocatabl e,

End Mddul e d obal Dat a

Pi =3. 14579

src_norm = 2. 28259E- 04 ! Source Fl ux
D mension(:,:)
Integer :: zones !Nunber of zones in problem
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Modul e Initialize

Use d obal Dat a

Inplicit None

Cont ai ns
| %%k kkhkhhhhhhhhhhhdhhhdhhhdhhdhdhdddhdddhdddhddhdhddhdhddrdhddrdddrdddrddddddddddrddrdsd

| R I I Sk b S I S S I O S S S S S

Subroutine InitializeData

| BRI R Sk Sk I b S b O R R R I I R R R O R R O AR R R R R R Rk o

Title: InititializeData
By: Ben Kowash
Data: 11 Nov 01

input file called "shield_input.txt". This file
contains informati on on the nunber of zones in

!

!

!

!

!

I Description: This subroutine reads nanelist information for an
!

!

! the shield, and what the zones are made up of.
!

!

!
| IR Ik kS S S S S S S S S

Implicit None

Character(Len=12) :: nane

Integer :: numregion ! Nunber of regions in problem

Real (8) :: Nsource, Psource !Source n and p flux [n-cnl cmt3-sec]
Integer :: i

Real (8) :: width 'Wdth of given region
I NanmeLi st Decl arati on
NaneLi st/ Shi el d/ nane, num regi on, Nsource, Psource
NaneLi st/ Material /nane, wi dth

IOpen file and get input

pen(Unit=10, File="Shield Input.txt")
Read( 10, NML = Shi el d)

shi el d_nane = nane

zones = numregi on

src_neutron = Nsource

src_photon = Psource

I Check arrays for prior allocation and then allocate

If (Allocated(reg nane)) Deal |l ocate(reg_nane)
Al |l ocat e(reg_nane(0: zones))
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If (Allocated(reg density)) Deallocate(reg_density)
Al l ocat e(reg_density(0:zones))

If (Allocated(reg dim) Deallocate(reg dim
Al l ocate(reg_di m(1, 0: zones))

I'Al | ocate Transm ssion arrays
If (Allocated(T_fwdN)) Deal |l ocate(T_fwdN)
Al l ocat e(T_fwdN(O: zones, 2))

If (Allocated(T revN)) Deallocate(T_revN)
Al l ocate(T_revN(0O: zones, 2))

If (Allocated(T_fwdP)) Deall ocate(T_fwdP)
Al l ocat e(T_fwdP(0: zones, 2))

If (Allocated(T revP)) Deallocate(T_revP)
Al'l ocate(T_revP(0: zones, 2))

I'All ocate Reflection arrays
If (Allocated(R fwdN)) Deal |l ocate(R _fwdN)
Al |l ocat e( R fwdN( 0: zones, 2))

If (Allocated(R revN)) Deallocate(R revN)
Al l ocate(R revN(0: zones, 2))

If (Allocated(R fwdP)) Deall ocate(R fwdP)
Al l ocat e(R_fwdP(0: zones, 2))

If (Allocated(R revP)) Deallocate(R revP)
Al l ocat e(R revP(0: zones, 2))

I'Al |l ocate source arrays
If (Allocated(src_fwdN)) Deal |l ocate(src_fwdN)
Al l ocat e(src_fwdN(1, 0: zones))

If (Al located(srcErr_fwdN)) Deal | ocate(srcErr_fwdN)
Al l ocat e(srcErr_fwdN(1, 0: zones))

If (Allocated(src_fwdP)) Deal |l ocate(src_fwdP)
Al l ocate(src_fwdP(1, 0: zones))

If (Allocated(srcErr_fwdP)) Deal |l ocate(srcErr_fwdP)
Al l ocat e(srcErr_fwdP(1, 0: zones))

I'Al | ocate solution arrays
If (Al located(sol _fwdN)) Deal |l ocate(sol fwdN)
Al'l ocat e(sol _fwdN(0: zones, 0: zones))

If (Allocated(sol _revN)) Deall ocate(sol _revN)
Al |l ocat e(sol _revN(0: zones, 0: zones))

If (Allocated(sol _fwdP)) Deall ocate(sol fwdP)
Al |l ocat e(sol _fwdP(0: zones, 0: zones) )
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If (Allocated(sol _revP)) Deall ocate(sol _revP)
Al |l ocat e(sol _revP(0: zones, 0: zones))

I'All ocate error arrays

If (Allocated(err fwdN)) Deal |l ocate(err_fwdN)
Al l ocate(err_fwdN(O: zones, 0: zones))

If (Allocated(err_revN)) Deallocate(err_revN)
Al l ocate(err_revN(O: zones, 0: zones) )

If (Allocated(err fwdP)) Deal |l ocate(err_fwdP)
Al l ocate(err_fwdP(0: zones, 0: zones) )

If (Allocated(err_revP)) Deallocate(err_revP)
Al l ocate(err_revP(0: zones, 0: zones))

If (Al ocated(src_nornRev)) Deal |l ocate(src_nornRev)
Al 'l ocat e(src_nornRev(1, 0: zones))

Do i =0, zones

Read( 10, NML Mat eri al )

reg_name(i) = nane
reg_diml,i) = wdth

End Do
C ose(10)

I Set up the reverse source normalization matrix with the proper val ues
I The values fromthe material data files is in the formof either the
Iflux or current. This value is normalized by the flux or current that
Icones fromthe source plane. The result of this, is that the shields
lare represented by the percentage that they can reduce the flux or
lcurrent by. Once the particle distribution is deternined, the val ues
lare un-nornmalized to give the correct val ues.

Do i =0, zones

If (reg dim(1,i) == 0.0d0) then
src_nornmRev(1l,i) = src_norm

El se
src_normRev(1l,i) = src_norm™* (sqrt(0.148) * 137.0d0) &
** 2.0d0 / (sqrt(0.148) * &
(137.0d0) + reg_dim(1,i))) ** 2.0dO
End |f
End Do

End Subroutine InitializeData

End Mbdule Initialize
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Modul e Matrix _Build
Use d obal Dat a
Inplicit None

Cont ai ns
| %%k kkhkhhhhhhhhhhhdhhhdhhhdhhdhdhdddhdddhdddhddhdhddhdhddrdhddrdddrdddrddddddddddrddrdsd

!
| R I I Sk b S I S S I O S S S S S

Subroutine Transmit_ Matrix

| IR IR Ik Sk kb I b S b R R R I I R R O b O O R Ik R R

Nanme: Transmit_ Matrix
By: Ben Kowash
Date: 11 Nov 01

|

|

|

|

]

I Description: This subroutine constructs a matrix, which contains
! the transm ssion informati on of particles through a
! given region. The transm ssion matrix contains

! both the transm ssion through vacuum and materi al .

|

|

|

|

|

0.1 - Builds transmi ssion matrix for 1 Energy group only
0.2 - Adds arrays which take into account error of estimators
and creates error matrices.

\Y
\

|
| IR I Sk Ik I b S b b b S I Rk O R R O R S

Inplicit None

Integer :: i

Real (8) :: x, x_low, x_hi !Location in region [cn]

Real (8) :: t_low, t_hi !Transnission values for hi and | ow
Real (8) :: err_low, err_hi !'Error values on transm ssion
Character(Len=20) :: infile

Character(Len=1) :: node ! Tracks photons or neutrons

Do i =0, zones

If (reg_name(i) == "Source") then
T fwdN(i,1) = 0.0dO0
T fwdN(i,2) = 0.0d0
T _fwdP(i,1) = 0.0dO
T_fwdP(i,2) = 0.0dO
T revN(i, 1) = 0.0dO
T revN(i,2) = 0.0d0
T revP(i, 1) = 0.0dO
T revP(i,2) = 0.0dO
El se

IDeterm ne the value for the forward transm ssion
infile = TRRMreg_nane(i)) // "f.dat"
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pen(Unit = 10, File = Triminfile), Action = 'Read')

Read( 10, 100) reg _density(i)
100 Format(/, T11, F6.2)
Read( 10, 120) node

120 Format (T6, Al,//)

Do
I'Find the boundi ng val ues of x
Do
Read( 10, *) x
If (reg_dim(1,i) < x) then
Backspace(10)
Backspace(10)
Read(10,200) x low, t _low, err_|ow
200 Format (F5. 2, T15, ES11. 5, T30, F6. 4)
Read( 10, 300) x_hi,t_hi,err_hi,
300 Format (F5. 2, T15, ES11. 5, T30, F6. 4)
Exi t
End |f
End Do

I'Use an interpolation function to find the transm ssion
I'val ue
If (nmobde == "n") then
T fwdN(i,1) = Interpolate(x_low, x _hi,t low, &
t_hi,reg_din(1,i))/ src_norm
T fwdN(i,2) = Interpolate(x_|low x_hi,err_low, &
err_hi,reg_din(1,i))

Else If (node == "p") then
T fwdP(i, 1) = Interpolate(x_low x_hi,t_low &
t_hi, reg dim1,i)) / src_norm

T fwdP(i,2) = Interpolate(x_low x_hi,err_low, &
err_hi, reg_dim(1,i))
End If
If (reg_name(i) == "Vac") then
T fwdP(i,1) = T_fwdN(i, 1)
T fwdP(i,2) = T_fwdN(i, 2)
End |f

If (nmode /= "p" .and. reg nane(i) /= "Vac") then
Do
Read( 10, 320) node
320 Format (T6, Al)
If (nmode == "p") then
Read( 10, 330)
330 Format (/)
Exi t
End |f
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End Do
El se

Exit
End | f

End Do
G ose(10)

IDeterm ne the value for the reverse transm ssion
infile = TRRMreg_nane(i)) // "r.dat"

Open(Unit = 20, File = Trin(infile), Action = 'Read')

Read( 20, 400)

400 Format (/)
Read( 20, 420) node
420 Format (T6, Al,//)

Do
I'Find the | ow val ue of x
Do
Read( 20, *) x
If (reg_dim1,i) < x) then
Backspace(20)
Backspace(20)
Read(20,500) x low, t_low, err_I|ow
500 Format (F5. 2, T15, ES11. 5, T30, F6. 4)
Read( 20, 600) x_hi, t_hi, err_hi
600 Format (F5. 2, T15, ES11. 5, T30, F6. 4)
Exi t
End If
End Do
IUse an interpolation function to find the transm ssion
'val ue
If (mode == "n") then
T revN(i,1) = Interpolate(x_low x_hi,t_low &
t_hi,reg_diml,i)) /I &
src_normRev(1,i)
T revN(i,2) = Interpolate(x_|low, x_hi,err_low, &
err_hi, reg_dim(1,i))
Else If (node == "p") then
T revP(i,1l) = Interpolate(x_|low x_hi, &
t low,t_hi,reg dim1,i)) / &
src_nornmRev(1,i)
T fwdP(i,2) = Interpolate(x_low x_hi, &
err_lowerr_hi,reg_din(l,i))
End |f
If (reg_nanme(i) == "Vac") then
T revP(i,1l) = T revN(i, 1)
T revP(i,2) = T_revN(i, 2)
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End If

If (mode /= "p" .and. reg_name(i) /= "Vac") then

Do
Read( 20, 620) node
620 Format (T6, Al)
If (nmode == "p") then
Read( 20, 630)
630 Format (/)
Exi t
End |f
End Do
El se
Exi t
End | f
End Do
C ose(20)
End |f
End Do

End Subroutine Transmit_ Matrix

[ I I I
!
| %%k dkhkhhhhhhhhhhhdhhhdhhhdhhhdhdhddhdddhddhddhdhddhdhddhdhddhdhdhdddddddrdddddrddrdx*x

Subroutine Reflect_Matrix

[ I I I

Nanme: Reflect_Matrix
By: Ben Kowash
Date: 11 Nov 01

reflection information of particles off a given region

1 - Builds reflection matrix for 1 Energy group only
.2 - Adds arrays which take into account error of estimators

!
!
!
!
!
I Description: This subroutine constructs a matrix which contains the
!
!
!
!
! and creates error matrices.

!
| BRI I Sk Sk S b S I S S S S S I I R I S

Implicit None

Integer :: i

Real (8) :: x, x_low, x_hi !Location in region [cn

Real (8) :: r_low, r_hi !Transm ssion values for hi and | ow
Real (8) :: err_low, err_hi !'Error values on transm ssion
Character(Len=12) :: infile

Character(Len=1) :: nopde ! Tracks photons or neutrons
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Do i =0, zones

If (reg_name(i) == "Vac") then
I There is no reflection froma vacuum so these are set to O.

R fwdN(i, 1) = 0.0dO
R fwdN(i,2) = 0.0dO
R fwdP(i, 1) = 0.0dO
R fwdP(i,2) = 0.0d0
R revN(i, 1) = 0.0dO
R revN(i,2) = 0.0d0
R revP(i, 1) = 0.0dO
R revP(i,2) = 0.0d0

Else If (reg_nane(i) == "Source") then
R fwdN(i, 1) = 0.0dO
R fwdN(i, 2) = 0.0d0
R fwdP(i, 1) = 0.0dO
R fwdP(i, 2) = 0.0d0
R revN(i,1l) = 0.6818 !Neutron reflection off source
R revN(i,2) = 0.0022 !Neutron reflection error
R revP(i,1) = 0.3241 !Photon reflection off source
R revP(i,2) = 0.0021 !Photon reflection error

El se

I Determ ne the value for the forward transm ssion
infile = TRRMreg_nane(i)) // "f.dat"

Open(Unit = 10, File = Trinm(infile), Action = 'Read')

Read( 10, 100) reg _density(i)
100 Format (/,T11l, F6.2)
Read( 10, 120) node

120 Format (T6, Al,//)

Do
I'Find the | ow val ue of x
Do
Read( 10, *) x
If (reg_dim1,i) < x) then
Backspace(10)
Backspace(10)
Read(10,200) x low, r_low, err_I|ow
200 For mat (F5. 2, T45, ES11. 5, T60, F6. 4)
Read( 10, 300) x_hi, r_hi, err_hi
300 Format (F5. 2, T45, ES11. 5, T60, F6. 4)
Exi t
End If
End Do

IUse an interpolation function to find the transm ssion val ue
If (nmobde == "n") then
R fwdN(i,1) = Interpolate(x_low x_hi,r_low, &
r_hi,reg_dim(1,i)) / src_norm
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R fwdN(i,2) = Interpolate(x_low x _hi,err_low, &
err_hi, reg dim(1,i))
Else If (nmode == "p") then
R fwdP(i, 1) = Interpolate(x_low x_hi,r_low, &
r_hi,reg_dim(1,i)) / src_norm
R fwdP(i,2) = Interpolate(x _low, x _hi,err_low, &
err_hi,reg dim(1,i))
End If
If (nmode /= "p" .and. reg nane(i) /= "Vac") then
Do
Read( 10, 320) node
320 Format (T6, Al)
If (nmobde == "p") then
Read( 10, 330)
330 Format (/)
Exi t
End |f
End Do
El se
Exi t
End If
End Do
G ose(10)

IDeterm ne the value for the reverse transm ssion
infile = TRRMreg_nane(i)) // "r.dat"

Qpen(Unit = 20, File = Trimiinfile), Action = 'Read')

Read( 20, 400)

400 Format (/)
Read( 20, 420) node
420 Format (T6, Al,//)

Do
I'Find the | ow val ue of x
Do
Read( 20, *) x
If (reg dim(1,i) < x) then
Backspace(20)
Backspace(20)
Read(20,500) x low, r_low, err_|ow
500 Format (F5. 2, T45, ES11. 5, T60, F6. 4)
Read( 20, 600) x_hi, r_hi, err_hi
600 Format (F5. 2, T45, ES11. 5, T60, F6. 4)
Exi t
End |f
End Do
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I'Use an interpolation function to find the transm ssion

I'val ue
If (mpde == "n") then
RrevN(i,1l) = Interpolate(x_low x_hi,r_low, &
r hi,reg dim1,i)) / &
src_normRev(1,i)
RrevN(i,2) = Interpolate(x_low x_hi,err_low, &
err_hi,reg_din(l,i))
Else If (node == "p") then
RrevP(i,1) = Interpolate(x_low x_hi,r_low, &
r_hi,reg dim1,i)) / &
src_normRev(1,i)
RrevP(i,2) = Interpolate(x _low, x_hi,err_low, &
err_hi, reg dim1,i))
End If
If (nmode /= "p" .and. reg nane(i) /= "Vac") then
Do
Read( 20, 620) node
620 Format (T6, Al)
If (mpode == "p") then
Read( 20, 630)
630 Fornmat (/)
Exi t
End If
End Do
El se
Exi t
End If
End Do
Cl ose(20)
End If
End Do

End Subroutine Reflect Matrix

| R I Ik kb S I S S R S S S O O O

!
| *kkkkhkhkhkhkhkhkhkhkhkhkhkhhkhhkhkhhkhdkdhhdhhhrdhhhhhrdkrddrdrrdrdkddkdkddrddrrrrddrdrrrrrrxxxx*x
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Subr outi ne

Shield Matrix

| %%k dhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhddhdddhddhdhddhdhrdhdhddhdhddrddddrdrdddddddrddxdx*x

Name: Shield_Matrix
By: Ben Kowash

Date: 11

v 0.1 -
]

Nov 01

matri ces that have been created, and conbi nes them
to formthe shield matrix to the shielding probl em
of interest.

!
!
!
!
!
I Description: This subroutine takes the reflection and transm ssion
!
!
!
!
!

Builds the total shield matrix for 1 Energy group only

[ R R A R R R R R A R R

Implicit None

| nt eger

sol _fwdN
sol _revN
sol _fwdP
sol _revP

cNeoNoNe]

err_fwdN
err_revN
err_fwdP
err_revP

I Cal cul ate

]

. 0dO
. 0dO
. 0dO
. 0d0

. 0dO
. 0dO
. 0dO
. 0dO

cNeoNoNe]

the forward solution matri x

Do i =1, zones

Do j =0, zones

If ((i-j)==1) then
sol fwdN(i,j) = T_revN(i,1) * RrevNii-1,1)
If (sol _fwdN(i,j) == 0.0d0) then
err_fwdN(i,j) = 0.0dO
El se
err_fwdN(i,j) = sqrt(T_revN(i,2) ** 2.0d0 + &
RrevN(i-1,2) ** 2.0d0)
End If

sol _fwdP(i,j) = T_revP(i,1) * RrevP(i-1,1)
If (sol _fwdP(i,j) == 0.0d0) then
err_fwdP(i,j) = 0.0dO
El se
err_fwdP(i,j) = sqrt(T_revP(i,2) ** 2.0d0 + &
RrevP(i-1,2) ** 2.0d0)
End |f

Else If ((i-j) < 1) then

sol _fwdN(i,j) = sol fwdN(i,j-1) * T_fwdN(i, 1)
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If (sol _fwdN(i,j) == 0.0d0) then
err_fwdN(i,j) = 0.0dO
El se
err_fwdN(i,j) = sqgrt(err_fwdN(i,j-1)**2.0d0 + &
T fwdN(j,2) ** 2.0d0)
End |f

sol _fwdP(i,j) = sol _fwdP(i,j-1) * T_fwdP(i, 1)
If (sol _fwdP(i,j) == 0.0d0) then
err_fwdP(i,j) = 0.0dO
El se
err_fwdP(i,j) = sqgrt(err_fwdP(i,j-1)**2.0d0 + &
T fwdP(j,2) ** 2.0d0)
End If

End If
End Do
End Do

I Cal cul ate the reverse solution matrix
Do i =0, zones

Do j=zones, 0, -1

If ((i-j)==-1) then
If (i < (zones - 1)) then
sol _revN(i,j) = T_fwdN(i+1,1) * R fwdN(i+2,1)
If (sol_revN(i,j) == 0.0d0) then
err_revN(i,j) = 0.0d0
El se
err_revN(i,j) = sqgrt(T_fwdN(i+1,2) &
**2.0d0 + R fwdN(i +1,2) &
**2.0d0)
End |f

sol _revP(i,j) = T_fwdP(i+1,1) * R fwdP(i+2,1)
If (sol _revP(i,j) == 0.0d0) then
err_revN(i,j) = 0.0d0
El se
err_revP(i,j) = sqrt(T_fwdP(i+1,2)**2.0d0 + &
R fwdP(i +2,2) ** 2.0d0)
End I f

End If

Else If ((i-j) >= 0) then
If (i /= zones) then
sol _revN(i,j) = sol _revN(i,j+1) * T_revN(i+1,1)
If (sol _revN(i,j) == 0.0d0) then
err_revN(i,j) = 0.0d0
El se
err_revN(i,j) = sqgrt(err_revN(ii,j+1l) &
**2.0d0 + T_revN(j +1,2) &
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**2.0d0)
End If

sol _revP(i,j) = sol _revP(i,j+1) * T_revP(i+1,1)
If (sol _revP(i,j) == 0.0d0) then
err_revP(i,j) = 0.0d0

El se
err_revP(i,j) = sqgrt(err_revP(i,j+1) &

**2.0d0 + T_revP(j+1,2) &
**2.0d0)

End |f

End If
End |f
End Do

End Do

Src_fwdN = 0.0dO
SrcErr_fwdN = 0. 0dO
Src_fwdP = 0.0d0
SrcErr_fwdP = 0. 0dO

IBuild the source matrix that specifies the initial boundary conditions
Do i =0, zones

If (i == 0) then
Src_fwdN(1,i) = src_neutron
Src_fwdP(1,i) = src_photon
El se
Src_fwdN(1,i) = Src_fwdN(1,i-1) * T fwdN(i, 1)

SrcErr_fwdN(1l,i) = sqgrt(SrcErr_fwdN(1,i-1) ** 2.0d0 + &
T_fwdN(i,2) ** 2.0d0)

Src_fwdP(1,i) = Src_fwdP(1,i-1) * T_fwdP(i, 1)
SrcErr_fwdP(1l,i) = sqgrt(SrcErr_fwdP(1l,i-1) ** 2.0d0 + &
T _fwdP(i,2) ** 2.0d0)
End |f
End Do

End Subroutine Shield Matrix

| BRI Ik Sk b I b S R R R R S R R R I R S I R R R R R S R R R R S
|

| R I Ik Sk b S S S S S O R I O S O S S S S S
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Real Function Interpolate(x low, x_hi, y low, y hi, x value)

| %%k dhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhddhdddhddhdhddhdhrdhdhddhdhddrddddrdrdddddddrddxdx*x

Nane: |nterpol ate
By: Ben Kowash
Date: 11 Nov 01

three known correspondi ng points.

v 0.1 - Inplenents a linear interpolation nethod
v 0.2 — Converts the y-values, which are logarithnmc in nature

!

!

!

!

I Description: This function interpol ates between two known val ues using
!

!

!

!

! so that the linear interpolation schene will be nore accurate.

!
| R I Sk kS b S S S S S S I R I I S

Implicit None

Real (8), Intent(IN) :: x_low, x_hi, x_value
Real (8), Intent(IN) :: y_low, y_hi

If (x_low == x_value) then
Interpolate = y | ow
El se
Interpolate = exp(In(y_hi)+((In(y_hi)-In(y_low)/ &
(x_hi-x_low)*(x_value-x_hi))
End |f

End Function Interpol ate

| I I kb S O O

|
| %k khdhhhhhhhhdhhhdhhhdhhhdhhdhddhddhdddhddhhdddhdhdhddhdhddhdddrdddrdddddddrddrdrdxdx*x

End Module Matrix_Build
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MODULE EVAL_SHI ELD
USE GLOBALDATA
I MPLICI' T NONE

CONTAI NS

| BRI I Sk Ik kb S b S b S S I R R S S R I O R R R

!
| I Ik Sk b S S S S S

SUBROUTI NE FLUX_CALCULATI ON

| BRI R Sk b Ik b S b S b R R Ik I S b I R R I O R R Rk S b b R

TI TLE: FLUX_CALCULATI ON
BY: BEN KOWASH
DATE: 10 NOv 01

I

I

I

!

I' DESCRI PTION: THI' S SUBROUTI NE CALCULATES THE LEFT- AND RI GHTWARD

! FLOW NG CURRENT AT THE BOUNDARI ES BETWEEN MATERI ALS. THE
! SCLUTI ON MATRI X COMBI NED W TH THE SOURCE VECTOR | S USED
! TO CALCULATE THE RI GHT FLOW NG CURRENT FI RST.

! TH' S RI GHTWARD CURRENT IS THEN USED I N A SECOND

! CALCULATI ON TO CALCULATE THE LEFTWARD CURRENT.

! THI' S PROCESS |'S CONTI NUED | TERATI VELY UNTIL THE

! VALUES OF THE FLUX CONVERGE W THI N SOVE TOLERANCE.

I
I
I

V0.1 - CALCULATES THE FLUXES FOR 1 ENERGY GROUP ONLY
!
!***********************************************************************

I VPLI CI' T NONE

REAL(8), ALLOCATABLE, DI MENSI O\(:
REAL(8), ALLOCATABLE, DI MENSI O\(:

, J_CLDNF ! PREV | TERATI ON VALUE
REAL(8), ALLOCATABLE, DI MENSI O\(: : :

J_CLDNR ! PREV | TERATI ON VALUE
J_CLDPF ! PREV | TERATI ON VALUE
J_OLDPR ! PREV | TERATI ON VALUE
J_ERRNF I'N CURRENT ERR FWD
J_ERRNR I' N CURRENT ERR BKWD
J_ERRPF ' P CURRENT ERR FWD
J_ERRPR ' P CURRENT ERR BKWD

REAL(8), ALLOCATABLE, DI MENSI ON(:
REAL(8), ALLOCATABLE, DI MENSI ON(:
REAL(8), ALLOCATABLE, DI MENSION(:,:
REAL(8), ALLOCATABLE, DI MENSION(:,:
REAL(8), ALLOCATABLE, DI MENSION(:,:

N N N N N N N

REAL(8), PARAMETER :: TCOLERANCE = 1E-6 ! CONVERGENCE TOL. FOR CURRENT
REAL(8) :: ERRVAX_FWD, ERRVAX _REV ! ERROR | N TOLERANCE CALCULATI ONS
REAL(8) :: TEMP_ERR ! USED TO CALCULATE TOTAL ERRCR ON MATRI CES
INTECER :: I, J

I NTEGER :: | TER ! COUNTS | TERATI ONS TO CONVERGENCE

LOG CAL :: CONVERGED
REAL(8) :: X

95



| DEALLOCATE TRANSM SSI ON AND REFLECTI ON ARRAYS, WHI CH AREN T NEEDED

| DEALLOCATE TRANSM SSI ON ARRAYS
DEALLOCATE( T_FWDN)
DEALLOCATE( T_REWN)
DEALLOCATE( T_FW\DP)
DEALLOCATE( T_REVP)

| ALLOCATE REFLECTI ON ARRAYS
DEALLOCATE( R_FVDN)
DEALLOCATE( R_REVN)
DEALLOCATE( R_FV\DP)
DEALLOCATE( R_REVP)

| CHECK ALLOCATI ON ON FLUX ARRAYS AND THEN ALLOCATE
| F (ALLOCATED(J_FWDN)) DEALLOCATE(J_FWDN)
ALLOCATE(J_FWDN( 1, 0: ZONES) )

| F (ALLOCATED(J_FWDP)) DEALLOCATE(J_FWDP)
ALLOCATE(J_FWDP( 1, 0: ZONES) )

| F (ALLOCATED(J_REVN)) DEALLOCATE(J_REVN)
ALLOCATE(J_REVN( 1, 0: ZONES) )

| F (ALLOCATED(J_REVP)) DEALLOCATE(J_REVP)
ALLOCATE(J_REVP( 1, 0: ZONES) )

| F (ALLOCATED(J_OLDNF)) DEALLOCATE(J_OLDNF)
ALLOCATE(J_OLDNF( 1, 0: ZONES) )

| F (ALLOCATED(J_OLDPF)) DEALLOCATE(J_OLDPF)
ALLOCATE(J_OLDPF( 1, 0: ZONES) )

| F (ALLOCATED(J_OLDNR)) DEALLOCATE(J_OLDNR)
ALLOCATE(J_OLDNR( 1, 0: ZONES) )

| F (ALLOCATED(J_OLDPR)) DEALLOCATE(J_OLDPR)
ALLOCATE(J_OLDPR( 1, 0: ZONES) )

| E (ALLOCATED(J_ERRNF)) DEALLOCATE(J_ERRNF)
ALLOCATE(J_ERRNF( 1, 0: ZONES) )

| F (ALLOCATED(J_ERRNR)) DEALLOCATE(J_ERRNR)
ALLOCATE(J_ERRNR( 1, 0: ZONES) )

| F (ALLOCATED(J_ERRPF)) DEALLOCATE(J_ERRPF)
ALLOCATE(J_ERRPF( 1, 0: ZONES) )

| F (ALLOCATED(J_ERRPR)) DEALLOCATE(J_ERRPR)
ALLOCATE(J_ERRPR( 1, 0: ZONES) )

I'BEG N | TERATI ON PROCESS TO CONVERGE ON SCLUTI ON

J_OLDNF = 0.0
J_OLDPF = 0.0
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J_OLDNR
J_OLDPR
J_FWDN
J_REVN
J_FVWDP
J_REVP

ino
co
oo

[cNeoNeoNe]

J_ERRNF
J_ERRNR
J_ERRPF
J_ERRPR

SRCERR_FV\DN
0.0
SRCERR_FV\DP
0.0

ITER = 0

| CALCULATE THE NEUTRON CURRENT

DO
| CALCULATE RI GHT DI RECTI ONAL NEUTRON FLUX
J_FWDN = MATMUL(J_REVN, SOL_FWDN) + SRC_FWDN

X=0

I'TH S LOOP CORRECTS THE CURRENT VECTOR W TH THE

I EXPONENTI AL FACTOR THAT WAS FOUND WHEN COVPARI NG
I”SPLIT_SH ELD” RESULTS W TH MCNP4C.

DO | =0, ZONES
J FWDN(L, 1) = J_FWDN(1,1) * EXP(0.0235 * X) / 1.11
X =X+ REGDM1,1)

END DO

| CALCULATE THE ERROR FOR THE CALCULATI ONS FORWARD
DO | =0, ZONES
|F (J_REVN(1,1) /= 0.0D0) THEN
TEMP_ERR = SQRT(J_ERRNR(1,1) ** 2.0D0 + &
SRCERR FWDN( 1, 1) ** 2.0D0)
ELSE
TEMP_ERR = SQRT((SRCERR FVWDN(1,1) / &
SRC_ FVDN(1,1)) ** 2.0D0)
END | F

DO J=0, ZONES
TEMP_ERR = SQRT(TEMP_ERR ** 2.0D0 + ERR FWDN(|,J) ** 2.0D0)
END DO

|F (J_REVN(1,1) /= 0.0D0) THEN
J_ERRNF(1,1) = SORT(TEMP_ERR ** 2.0D0 + &
J_ERRNR(1,1) ** 2.0D0)

ELSE
J_ERRNF(1, 1)
END | F

SQRT((TEMP_ERR / J_FWDN(1,1)) ** 2.0D0)
END DO

| CALCULATE LEFT DI RECTI ONAL NEUTRON CURRENT
J_REVN = MATMUL(J_FWDN , SOL_REVN)
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X =0

DO 1 =0, ZONES
J_REVN(1,1) = J_REVN(1,1)
X=X+ REGDMI,1)

END DO

| CALCULATE THE ERROR FOR THE CALCULATI ONS BACKWARD
DO | =0, ZONES
TEMP_ERR = SQRT(J_ERRNF(1,1) ** 2.0D0)
DO J=0, ZONES
TEMP_ERR = SQRT(TEMP_ERR ** 2.0D0 + ERR REVN(I,J) ** 2.0D0)
END DO

|F (J_REVN(1,1) /= 0.0D0) THEN

J_ERRNR(1,1) = SORT(TEMP_ERR ** 2.0D0 + &
J_ERRNF(1,1) ** 2.0D0)
ELSE
J_ERRNR(1,1) = SQRT(J_ERRNF(1,1) ** 2.0D0)
END | F
END DO

I CHECK FOR CONVERGENCE COF NEUTRON FLUX

ERRVAX_FWD = MAXVAL( ERROR(J_FWDN, J_OLDNF))

PRINT *, | TER ERRMAX FWD

ERRVAX_REV = MAXVAL(ERROR(J_REVN, J_OLDNR))

PRINT *, | TER ERRVAX REV

CONVERGED = (( ERRVAX_FWD <= TOLERANCE) . AND. (ERRMAX REV <= TOLERANCE))

| F (CONVERGED) EXI T
J_OLDNF = J_FWDN
J_OLDNR = J_REWN
ITER = I TER + 1

END DO

J_FWDN = J_FWDN * SRC_NORM
J_REVN = J_REVN * SRC_NORMREV
| TER = 0

| CALCULATE THE PHOTON CURRENT
DO

| CALCULATE RI GHT DI RECTI ONAL PHOTON CURRENT
J_FWDP = MATMUL(J_REVP, SOL_FWDP) + SRC_FWDP

X=0

DO | =0, ZONES
J_FWDP(1,1) = J_FWDP(1,1) * EXP(0.0235 * X)/1.11
X = X + REGD M1, 1)

END DO

| CALCULATE THE ERROR FOR THE CALCULATI ONS FORWARD
DO 1 =0, ZONES
TEMP_ERR = J_ERRPF(1, |)
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DO J=0, ZONES
TEMP_ERR = SQRT(TEMP_ERR ** 2.0D0 + &
ERR FWDP(1,J) ** 2.0D0)
END DO
J_ERRPF(1,1) = TEMP_ERR

END DO

I CALCULATE LEFT DI RECTI ONAL PHOTON FLUX
J_REVP = MATMUL(J_FWDP, SOL_REVP)

X=0
DO | =0, ZONES
J_REVP(1,1) = (J_REVP(1,1) * EXP(0.0334 * X))
X = X + REGD M1, 1)
END DO
| CALCULATE THE ERROR FOR THE CALCULATI ONS BACKWARD
DO | =0, ZONES
TEMP_ERR = J_ERRPR(1, |)
DO J=0, ZONES
TEMP_ERR = SQRT(TEMP_ERR ** 2.0D0 + &
ERR_REVP(1,J) ** 2.0D0)
END DO
J_ERRPR(1,1) = TEMP_ERR
END DO

| CHECK FOR CONVERGENCE OF PHOTON FLUX
ERRVAX_FWD = MAXVAL( ERROR(J_FWDP, J_OLDPF))
PRINT *, | TER ERRVAX FWD
ERRVAX_REV = MAXVAL(ERROR(J_REVP, J_OLDPR))
PRINT *, | TER ERRVAX REV
CONVERGED = ( ( ERRVAX_FWD <= TOLERANCE) &

| F

J_OLDPF
J_OLDPR

.AND. (ERRMAX REV <= TOLERANCE))
( CONVERGED) EXI T

J_FVWDP
J_REVP

ITER = ITER + 1

END DO

J_FVWDP
J_REVP

END SUBROUTI NE

J_FWDP * SRC_NORM
J_REVP * SRC_NORM

FLUX_CALCULATI ON

[ R R R R R R R R R R R

[ S I S I R R
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SUBROUTI NE SHI ELD_PROPERTI ES

| %%k dhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhddhdddhddhdhddhdhrdhdhddhdhddrddddrdrdddddddrddxdx*x

TI TLE: SH ELD _PROPERTI ES
BY: BEN KOMSH
DATE: 10 NOv 01

MASS OF THE SH ELD. VOLUMES ARE CALCULATED BASED ON
A CONE WTH A VERTEX LOCATED 137 CM FROM THE SOURCE
PLANE. THE CONE HAS A HALF CONE ANGLE OPENI NG COF 22
DEGREES.

!
!
!
!
I' DESCRI PTION: THI' S ROUTI NE CALCULATES THE TOTAL VOLUME AND THE TOTAL
!
!
!
!
I V0.1 - CALCULATES SH ELD MASS AND VOLUME

!
| R I Sk Sk S b S S O I O O O S S I

I MPLI CI' T NONE

I NTEGER :: |
REAL(8) :: RAD _LEFT, RAD RIGHT ! RADIUS OF SHI ELD ON LEFT AND RI GHT FACES
REAL(8) :: X !'POSTION I N SHI ELD

| CHECK VOLUMVE AND MASS ARRAYS FOR ALLOCATI ON, THEN ALLOCATE
| F ( ALLOCATED( VOLUME) ) DEALLOCATE( VOLUVE)
ALLOCATE( VOLUVE( 0: ZONES) )

| F (ALLOCATED( MASS)) DEALLOCATE( MASS)
ALLOCATE( MASS( 0: ZONES) )

VOLUNME( 0) 0

MASS(0) =
X=0
RAD LEFT = (X + 137) * SQRT(O. 148)

= 0.
0.0

| CALCULATE THE VOLUME AND MASS OF THE | NDI VI DUAL SHI ELD SECTI ONS
DO | =1, ZONES
X=X+ REGDMI,1)
RAD RIGHT = (X + 137) * SQRT(O. 148)
VOLUME(l) = (Pl * REGDIM1,1) / 3.0D0) * (RAD _LEFT **2.0D0 + &
(RAD_LEFT * RAD _RIGHT) + RAD RIGHT ** 2.0D0)
MASS(1) = VOLUVE(1) * REG DENSITY(I) / 1000.0D0
RAD LEFT = RAD_RI GHT

END DO

END SUBROUTI NE SHI ELD_PROPERTI ES

| xkkkkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhhhhhdkhhhhdhhhdhdkrdkdkdrdrdrdkdkdkdkdkdkdddrrdrdddddrrrrdxxxxx*x

|
| %k dhkhhhhhhkhhhhhdhhhdhhhdhhhdhdhddhddhddhhddhdhdhdhdhrdhdhddhdrdhdrddddddddxddxx%
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ELEMENTAL FUNCTI ON ERROR( X, Y)
I MPLI CI' T NONE

REAL(8), INTENT(IN):: X, Y
REAL(8) :: ERROR

IF (X ==0.0 .AND. Y == 0.0) THEN

ERROR = 0.0
ELSE

ERROR = 2.0D0 * ABS(X-Y) / (ABS(X) + ABS(Y))
END | F

END FUNCTI ON ERROR

[ R R A R R A R R
!
| %k dhkhhhdhhdhhhdhhhdhhhdhhdhhdddhdddhdddhddrdhddhdhddhdddrdhddrdddrdrdrdrdrdrdrdrdrdrddrdsd

SUBROUTI NE RESULTS
| MPLI CI T NONE

| NTEGER :: |

REAL(8) :: PCSITION
CHARACTER(1) :: MODE

OPEN (UNI T=10, FILE = SHI ELD NAME, ACTION = "WRITE , &
STATUS = ' UNKNOWN )

WRI TE( 10, 100) TRI M SHI ELD_NAME)

100 FmT( "RESULTS FOR ", A, [/, "=========================" /)
WRI TE( 10, 200) SRC _NEUTRON, SRC PHOTON
200 FORMAT("SOURCE NEUTRON CURRENT = ", ES8.2, /, &
"SOURCE PHOTON CURRENT = ", ESS8.2, /)
MODE = "N
DO

WRI TE( 10, 300) MCDE

300 FORMAT("RESULTS FOR MODE = ", Al)

VR TE( 10, 400)

400 FORMAT("POS. [CM ", T15, "MATERI AL", T25,"J RT [N S]", &
T40,"J_LT [N S]", T55, "VOLUME [CM3]", T70, MASS &
K(;J " / , "=========" T15, "========" T25, &

PCSI TION = 0. 0DO
DO | =0, ZONES
POSI TION = PCSI TION + REG DIM 1, 1)
|F (MODE == "N') THEN
WRI TE( 10, 500) POSI TI ON, TRI M REG NAMVE(1)), &
J FWDN(L, 1), J_REVN(L, 1), &
VOLUME( 1), MASS(I)
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500 FORVAT(T2, F7.2, T16, A, T25, ES8.2, T40, &
ES8. 2, T55, ES8.2, T70, ES8.2)

ELSE
VRI TE( 10, 600) POSI TION, TRIM REG NAMVE(1)), &
J FWDP(1,1), J REVP(1,1), &
VOLUMVE( 1), MASS(1)
600 FORMAT(T2, F7.2, T16, A, T25, ES8.2, T40,&
ES8.2, T55, ES8.2, T70, ESS8.2)
END | F
END DO

WRI TE( 10, 700) SUM VOLUVE), SUM MASS)

700 FGQ]\/AT( T55, "========================" [ T45, "TOTAL:", &
T55, ES8.2, T70, ES8.2)

VR TE( 10, 800)

800 FORMAT(//)

IF (MODE == "P") EXIT
MCDE = "P"
END DO

CLOSE( 10)

END SUBROUTI NE RESULTS

| %%k dhkhhhhhhhhhhhdhhhdhhhdhhhdhdhddhddhdhdhdddhddhdhrdhdhddhdhddrddddrdrdrddrddrddxdx*x
!
| I I kO O

END MODULE EVAL_SHI ELD
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Appendix D: “MissDiskProbability” Program

Program MissDiskProbability

1 3k sk sk sk sk sk sk s sk sk sk sk sk sk s sk sfe sk sk sk sk sk sk sk sk sk sk s sk sfe sk sk sk sk s sk sfe sk sk sk sk sk sk sk sk sk sk s sk sfe sk sk sk sk sk sk sk sk sk skeok skokosk
|

! Program: MissDiskProbability

! By: K.A. Mathews for Ben Kowash

! Date: 28 Feb 02

!

! Description: This program is used to calculate the probability that a particle born a

1 location on one disk will miss another disk that is separated by some
distance delta z. The program is used to indicate the effectiveness that
geometry has in allowing particles to leak from a system. The code used a
Monte Carlo technique to perform the estimation of the leakage probability.

!
!
!
!
!
!'v.0.1: Implements Monte Carlo method to determine the probability of missing the disk
! given a half cone angle and location of shields 1 and 2.

!

! v.0.2: Added user interface utility and output of data to file. Added by Ben Kowash.
!
!********************************************************************

Implicit None

Integer, Parameter :: dp = Selected Real Kind(p=14)
Integer, Parameter :: nBatches = 10, nParticles = 100000
Real(dp), Parameter :: pi = 3.1415926535897932
Integer :: batch, particle

Integer :: missed(1:nBatches)

Real(dp), Dimension(1:3) :: rl, r2, omegaHat
Real(dp) :: Radiusl, Radius2, z1, z2, xi, omega, rFrac
Real(dp) :: pAvg, pMissed(1:nBatches)

Real(dp) :: Radius1Sqr, coneAngle, pCenter
Character(12) :: outfile

Character(1) :: calc_again

Write (*,"(A)",Advance = "NO") "Enter the output file name: "
Read (*,*) outfile

Open(Unit=20, File = Trim(outfile), Status = 'Unknown', Action = "Write')
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Write(20,100)

100 Format("Pos. 1", T10, "Pos 2", T20, "Prob. of Miss", T45, "Prob. of Miss From
Center", /, &
u::::::n, TlO, n:::::n’ T20, " u’ T45,
n ")

Do

Write (*,"(A)",Advance = "NO") "Enter the half cone angle of the system [deg]: "
Read (*,*) coneAngle

Write (*,"(A)",Advance = "NO") "Enter the location of shield 1 [cm]: "

Read (*,*) z1

Write (*,"(A)",Advance = "NO") "Enter the location of shield 2 [cm]: "

Read (*,*) z2

missed = 0._dp

coneAngle = coneAngle * pi/ 180. dp
Radiusl = z1 * tan(coneAngle)
Radius2 = z2 * tan(coneAngle)
Radius1Sqr = Radiusl ** 2. dp

Call Random_Seed()
Do batch = 1, nBatches
Do particle = 1, nParticles

Call Random Number(xi)

If (xi <= l.e-6_dp) then
missed = missed + 1
Cycle

End If

Call Random Number(omega)
omega =2. dp * pi * omega

Call Random Number(rFrac)
rFrac = Sqrt(rFrac)

r2 = (/ Radius2 * rFrac, 0. dp, z2 /)

omegaHat = (/ cos(omega) * sqrt(1 - xi**2. dp), sin(omega) *
sqrt(1 - xi**2. dp), -xi/)

rl =r2 + omegaHat * (z2 - z1) / xi

If (r1(1)**2. dp + r1(2)**2._dp > Radius1Sqr)
missed(batch) = missed(batch) + 1
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End do

End do

pMissed(batch) = Real(missed(batch),dp) / Real(nParticles,dp)
End do
Open(Unit=20, File = Trim(outfile), Status = 'Unknown', Action = "Write')

pAvg = Sum(pMissed) / nBatches
Print *, "Average probability of missing disk 1 from disk 2 =", pAvg

pCenter = (z2 - z1) / sqrt((z2 - z1)**2._dp + Radius1Sqr)
Print *, "Miss probability from center of disk 2 =", pCenter
Print *, "Batch results:"
Do batch = 1, nBatches

Print *, pMissed(batch)
End do

Write(20,200) z1, z2, pAvg, pCenter
200 Format(F7.2, T10, F7.2, T20, F12.6, T45, F12.6)

Write (*,"(A)",Advance = "NO") "Would you like to do another calculation [y/n]:
Read (*,*) calc_again

If (calc_again =='"n' .or. calc_again == 'N') Exit

End Program MissDiskProbability
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